{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"从制备方法、结构特征和光电性能等各方面介绍了氢化非晶硅碳合金(a-SiCx:H)薄膜这种重要的半导体材料.对其发展现状及前景进行了综述.并对近年来出现的纳米硅碳(nc-SiCx:H)薄膜的发展状况作了专门评述.","authors":[{"authorName":"史国华","id":"7db628a1-b24b-4168-9827-c08c3f53aaf3","originalAuthorName":"史国华"},{"authorName":"张溪文","id":"fdf03535-3ebe-45d7-9bca-8e6d6ec74226","originalAuthorName":"张溪文"},{"authorName":"杜丕一","id":"e2d80380-1359-488c-855a-d6ff162c9792","originalAuthorName":"杜丕一"},{"authorName":"韩高荣","id":"d9cf55bc-eb38-4b80-bb55-b25ce5b7fa50","originalAuthorName":"韩高荣"}],"doi":"","fpage":"41","id":"692e602d-4ec3-406a-9a94-fe3e3484abc4","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"bcf9d40b-a621-4c63-bafa-a521cddac485","keyword":"硅碳合金","originalKeyword":"硅碳合金"},{"id":"ec512ee5-4f60-4fc9-9c55-473806e53ebe","keyword":"非晶","originalKeyword":"非晶"},{"id":"39899144-54d9-4af4-88ab-9a01737d87ff","keyword":"纳米薄膜","originalKeyword":"纳米薄膜"},{"id":"11dff8e7-3493-445b-ac7d-346ecad4f58b","keyword":"结构","originalKeyword":"结构"},{"id":"c4f410e6-3ac0-41b0-a4a5-10b47337ea1e","keyword":"光电性能","originalKeyword":"光电性能"}],"language":"zh","publisherId":"cldb200002015","title":"非晶硅碳合金(a-SiCx:H)薄膜的进展","volume":"14","year":"2000"},{"abstractinfo":"应用高频红外碳硫仪,建立了硅锰合金中碳、硫的测定方法,对测定条件如助熔剂、分析时间等进行了探讨.在最大电流400mA,载气流速2.7~3.2L/min,最短分析时间30s(对碳)、40s(对硫),比较水平1.00(对碳)、2.00(对硫),坩埚焙烧2h等最佳条件下测定,分析结果令人满意.","authors":[{"authorName":"赵宇","id":"0a759b1c-e727-40e2-b6a0-6efe0174213b","originalAuthorName":"赵宇"},{"authorName":"宋立伟","id":"8480b414-e2d2-4c4c-9efe-2e1296c1fc90","originalAuthorName":"宋立伟"}],"doi":"10.3969/j.issn.1000-7571.2003.06.022","fpage":"60","id":"9bbe7dd5-f929-4eec-9263-3ac7396cff6a","issue":"6","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"1b614e37-c978-42e1-9310-384e0357b9fa","keyword":"高频红外法","originalKeyword":"高频红外法"},{"id":"97649355-b692-44f1-89a4-ebd36f325cf5","keyword":"硅锰合金","originalKeyword":"硅锰合金"},{"id":"c6a9727b-8117-4232-b9fb-cf630c6194ea","keyword":"碳","originalKeyword":"碳"},{"id":"50ceeb08-8d8b-48b2-9e7e-0f99be502bb2","keyword":"硫","originalKeyword":"硫"}],"language":"zh","publisherId":"yjfx200306022","title":"红外吸收法测定硅锰合金中碳、硫","volume":"23","year":"2003"},{"abstractinfo":"SiGeC三元合金成为近年来人们研究的热点之一.处于替代位置的碳可以缓解SiGe合金的应变,同时调节其能带,在能带工程上提供了更大的灵活性.本文利用UHV/CVD技术生长了掺碳达2.2%的锗硅碳合金,获得了良好的外延层质量,并对碳的应变缓解效应进行了研究.","authors":[{"authorName":"章国强","id":"018b5307-0ad6-4d1c-b031-10f463a71c72","originalAuthorName":"章国强"},{"authorName":"黄靖云","id":"6638523a-78ad-455c-bfc4-6d582c921557","originalAuthorName":"黄靖云"},{"authorName":"亓震","id":"e4a10aa7-abe2-41c9-b841-e0c5aecdada6","originalAuthorName":"亓震"},{"authorName":"卢焕明","id":"e8e855e0-9ba3-4b91-af50-e68c4c1a8ff7","originalAuthorName":"卢焕明"},{"authorName":"赵炳辉","id":"ede0370b-8148-4eef-979c-06db0054243f","originalAuthorName":"赵炳辉"},{"authorName":"汪雷","id":"0622ffbb-6e0b-4a5b-a8a2-a2a9183650c5","originalAuthorName":"汪雷"},{"authorName":"叶志镇","id":"60a97d4d-adc8-4309-a44c-6ce22034f0a0","originalAuthorName":"叶志镇"}],"doi":"10.3969/j.issn.1673-2812.2000.01.005","fpage":"25","id":"6a677f08-183f-4fec-8336-f30cb21760b3","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"5ae6c335-85ff-46ef-a804-95e4d3c73bf7","keyword":"锗硅碳合金","originalKeyword":"锗硅碳合金"},{"id":"e8e74a89-9118-4413-9c2c-44b0a3a104e5","keyword":"应变弛豫","originalKeyword":"应变弛豫"},{"id":"5b7cbadd-9fc7-49d3-9dea-49ade717c0db","keyword":"超高真空CVD","originalKeyword":"超高真空CVD"}],"language":"zh","publisherId":"clkxygc200001005","title":"锗硅碳合金中碳的应变缓解效应研究","volume":"18","year":"2000"},{"abstractinfo":"针对9Cr2MoV等锻钢冷轧工作辊碳含量高、轧辊淬硬层脆、淬硬层利用率低的缺点,提出降碳、硅合金化新型轧辊材料.试验结果表明,含0.75 % C的降碳、硅合金化材料是一种在恶劣工作条件下,抗事故性强、使用寿命长的冷轧工作辊材料.","authors":[{"authorName":"崔占全","id":"f53761bc-40fa-4bce-8631-8613cd60b43b","originalAuthorName":"崔占全"}],"doi":"","fpage":"52","id":"1d008876-bdb9-401f-bfc8-63af1fceef04","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4ed30a9f-8dbb-48c3-a5f7-109c2a6382f5","keyword":"降碳、硅合金化","originalKeyword":"降碳、硅合金化"},{"id":"e874a109-bb18-4ff9-a300-53f6817c71f7","keyword":"冷轧工作辊","originalKeyword":"冷轧工作辊"},{"id":"e99bee30-424a-4236-9eb0-5e89787ded6e","keyword":"淬硬层","originalKeyword":"淬硬层"},{"id":"52f320c4-4c22-4fd7-9452-b9466f9fac8c","keyword":"残余奥氏体","originalKeyword":"残余奥氏体"}],"language":"zh","publisherId":"gt199906013","title":"含碳0.75 %、硅合金化的新型冷轧辊材料","volume":"34","year":"1999"},{"abstractinfo":"试验研究了硅含量对中碳低合金耐磨钢组织、力学性能以及耐磨性能的影响.结果表明,基体中主要组织为板条状马氏体并伴有一定量针状马氏体.随硅含量增加针状马氏体数量增多,导致硬度略有提高,而冲击韧度则在硅含量高于0.97%后不同程度降低.低冲击功下,随含硅量升高钢磨损量增加;而高冲击功下随含硅量增加钢磨损量降低.在冲击磨料磨损工况下钢表层马氏体板条束纤维化,出现了加工硬化,由于硅的固溶强化和针状马氏体增多,含硅量较高钢加工硬化效果更明显.","authors":[{"authorName":"张治国","id":"c9b09d2a-c195-4c22-badb-14bba86e5787","originalAuthorName":"张治国"},{"authorName":"陈德东","id":"1a841d11-453e-4e04-a514-a772c4316cd5","originalAuthorName":"陈德东"},{"authorName":"李卫","id":"4ebfcaa5-a201-4968-94e4-c7d99ee0f83f","originalAuthorName":"李卫"}],"doi":"","fpage":"85","id":"fc269193-01c3-498b-ad72-d7a658da0b3c","issue":"9","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"90eb4359-1424-41e3-a453-c3ee8ec52f59","keyword":"合金钢","originalKeyword":"合金钢"},{"id":"fe8443a6-97de-468d-b22e-6d9853c31904","keyword":"硅含量","originalKeyword":"硅含量"},{"id":"2b01b77e-34ef-4077-87c7-6c4c78b0a07f","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"cea49545-4ecf-4179-86fe-3749c0508c08","keyword":"冲击磨料磨损","originalKeyword":"冲击磨料磨损"},{"id":"3df00e10-09ab-4b77-9ad4-f8c3ed84534d","keyword":"加工硬化","originalKeyword":"加工硬化"}],"language":"zh","publisherId":"jsrclxb201309016","title":"含硅中碳低合金钢的组织与冲击磨料磨损行为","volume":"34","year":"2013"},{"abstractinfo":"采用冷压烧结粉末冶金法制备铜钛硅碳石墨合金材料,通过摩擦磨损试验机和扫描电子显微镜(SEM)等手段研究了铜钛硅碳石墨合金材料的磨损性能和磨损机制,以及速度和载荷对滑块摩擦磨损性能的影响.结果表明,在速度较大或载荷较小的条件下磨损量随着滑移距离呈现线性增长,在试验参数范围内磨损量整体上随着滑移距离的变化曲线有一定的规律性.微观分析表明,钛硅碳和石墨零星分布在磨损表面极大地提高了铜基材料的耐磨性能.磨损的主要形式,是黏着磨损、磨粒磨损和氧化磨损.","authors":[{"authorName":"卢棋","id":"eba6a84d-2b03-4e69-934c-cf3b6c86674f","originalAuthorName":"卢棋"},{"authorName":"何国球","id":"5ad0ef80-b2db-43fd-8fb1-3e98a71a8c9f","originalAuthorName":"何国球"},{"authorName":"杨洋","id":"3111e259-2a8d-4b8a-b5d5-39913e1a0e32","originalAuthorName":"杨洋"},{"authorName":"樊康乐","id":"6914ba91-6a96-4189-a20f-7073aa8348b3","originalAuthorName":"樊康乐"},{"authorName":"赵小根","id":"22650de4-936e-4ba6-a410-7510ad26cb94","originalAuthorName":"赵小根"}],"doi":"","fpage":"216","id":"a2854f24-880e-4255-ba23-9d303ba51088","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"4c5244eb-b2a5-4162-b3f8-f0f1216b4254","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"53dcc1c7-2f9c-4db8-baec-447775579fe5","keyword":"钛硅碳","originalKeyword":"钛硅碳"},{"id":"11efe187-8228-42cf-88b8-98dd5dbf552c","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"},{"id":"e251a978-1af4-4387-bae6-f090cc3c7a12","keyword":"速度","originalKeyword":"速度"},{"id":"b032014f-6867-417d-af1b-bcbba6ee0adc","keyword":"载荷","originalKeyword":"载荷"},{"id":"2cfb886c-e255-40d5-9cc3-da2fe4e911a5","keyword":"磨损机制","originalKeyword":"磨损机制"}],"language":"zh","publisherId":"clyjxb201503008","title":"新型铜钛硅碳石墨合金材料的摩擦磨损性能","volume":"29","year":"2015"},{"abstractinfo":"利用XRD、TG/DTA技术分别分析真空碳管炉内不同反应温度下的物相组成和碳热共还原Al2O3、SiO2的反应过程,并在此基础上探讨碳热还原法制取铝硅合金的反应机理.分别采用10、15、20和25 K/min升温速率的差热分析,研究动态氩气气氛中碳热法制取铝硅合金的反应动力学.结果表明:碳热还原反应过程可分为4个阶段,其中,以碳化物的生成与分解阶段为主.碳热还原反应的4种还原机理中,碳化物的生成与分解理论能较好地解释反应过程中出现的反应现象.各个吸热峰的表观活化能分别为848.9、945.4、569.7、325.7、431.9和723.1 kJ/mol,给出了各个吸热峰的动力学方程.同时,利用XRF和红外定硫定碳仪对碳管炉和电炉所得产物组成的定量分析,验证了动力学分析结果的可行性.","authors":[{"authorName":"杨栋","id":"92d2c158-ff51-4b6b-b6b2-a8f97ab3b244","originalAuthorName":"杨栋"},{"authorName":"冯乃祥","id":"4a7150b3-27f9-4f96-9b08-1e5020c08aae","originalAuthorName":"冯乃祥"},{"authorName":"王耀武","id":"061fa08c-a24f-40c1-931f-2a9d50617b8e","originalAuthorName":"王耀武"},{"authorName":"彭建平","id":"7a9c0dd3-8779-4207-a730-606f948596e2","originalAuthorName":"彭建平"},{"authorName":"王紫千","id":"d185bd32-9816-4196-b89a-b5843ad19d79","originalAuthorName":"王紫千"},{"authorName":"狄跃忠","id":"3a92dcdd-cfe3-4923-af27-fa0c3471681d","originalAuthorName":"狄跃忠"}],"doi":"","fpage":"227","id":"2cd7c1dc-3c34-4ff8-9f06-e35029cbd61e","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"89a181d5-bb9a-40ec-b9a6-0f671a70ec75","keyword":"碳热还原","originalKeyword":"碳热还原"},{"id":"b1c51109-ae4c-4e76-8d6c-107a36cce3a8","keyword":"差热分析","originalKeyword":"差热分析"},{"id":"82b66177-da94-4e07-83f5-20d5776abb73","keyword":"铝硅合金","originalKeyword":"铝硅合金"},{"id":"3228df03-c051-4363-a700-ab49625691d4","keyword":"反应机理","originalKeyword":"反应机理"},{"id":"69fc5385-feec-477f-9b3e-fa7c5c95a733","keyword":"动力学方程","originalKeyword":"动力学方程"}],"language":"zh","publisherId":"zgysjsxb201101029","title":"碳热还原法制取铝硅合金的反应机理及其动力学","volume":"21","year":"2011"},{"abstractinfo":"研究了高硅中碳低合金钢空冷态和空冷+回火态的显微组织和力学性能.试验钢在860℃保温0.5h奥氏体化后空冷处理,随后分别在250℃和400℃保温1h回火.结果表明:试验钢空冷后组织为贝氏体/马氏体和残余奥氏体的混合组织,硬度约为41 HRC;而250℃回火后组织变化不大,硬度明显升高,约为49 HRC,韧性明显增加,由44 J/cm2增加到66 J/cm2,抗拉强度、屈服强度和延伸率明显下降.回火温度进一步增加对力学性能影响不大.","authors":[{"authorName":"苗隽","id":"b2b40da2-5e0d-40c6-b39f-1debe282cd9a","originalAuthorName":"苗隽"},{"authorName":"王立军","id":"751178ea-3ab8-418d-aa3f-813c80386879","originalAuthorName":"王立军"},{"authorName":"刘春明","id":"2ad85927-662d-47f8-b8ac-c4ca79562b03","originalAuthorName":"刘春明"}],"doi":"10.3969/j.issn.1671-6620.2012.01.009","fpage":"33","id":"d3770cdb-96fe-4d79-842d-4b9c9c9fb6c1","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"fabafca7-6b2c-4e0b-9bae-732a23753cf0","keyword":"高硅中碳低合金钢","originalKeyword":"高硅中碳低合金钢"},{"id":"75ebe46d-b220-4dd9-93fb-ca37739be5ad","keyword":"空冷","originalKeyword":"空冷"},{"id":"4499503e-f90b-4962-97db-b64d47edf1f3","keyword":"贝氏体/马氏体","originalKeyword":"贝氏体/马氏体"},{"id":"5a157b8c-273d-4f96-8639-bed05c549914","keyword":"残余奥氏体","originalKeyword":"残余奥氏体"},{"id":"00297546-6c37-4065-b795-bf5f9a28eaa2","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clyyjxb201201009","title":"空冷高硅中碳低合金钢的组织与性能","volume":"11","year":"2012"},{"abstractinfo":"用埋弧焊制备铁-碳-铬-硅合金堆焊层,通过显微组织观察、硬度测试和耐磨性能试验等方法研究了外加TiC颗粒含量对其显微组织及耐磨性的影响.结果表明:不同TiC含量的铁-碳-铬-硅合金堆焊层基体组织均为α-Fe,随TiC含量增加,初生M7C3颗粒尺寸从40~80μm逐渐减小至15~25 μm,颗粒数量增多,分布弥散,且出现了TiC2和TiC等增强相;弥散密集分布的M7 C3颗粒有利于堆焊合金层表面均匀磨损,避免因粗大脆性共晶优先磨损引起的过早失效,显著改善了耐磨性;该合金堆焊层的耐磨性随TiC含量的增加先增强,接着减弱,然后再增强,其主要磨损机理由微观断裂转变为微切削.","authors":[{"authorName":"龚建勋","id":"2bf9206a-634f-4eda-9626-8f47d2ef2813","originalAuthorName":"龚建勋"},{"authorName":"许继青","id":"1b2e6c31-fd45-48ac-b025-0b2a33090d26","originalAuthorName":"许继青"},{"authorName":"路德斌","id":"13a350bf-ecd3-42d8-b6a5-625c1ba3503f","originalAuthorName":"路德斌"},{"authorName":"吴慧剑","id":"83b5b822-ff21-4e04-812e-b2b2c15c3ffc","originalAuthorName":"吴慧剑"}],"doi":"","fpage":"43","id":"d34fab3c-bc1a-4814-be39-894011e47528","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"fcd0b51f-4355-40fe-aec8-a4592bcb7b66","keyword":"堆焊","originalKeyword":"堆焊"},{"id":"6c5183b9-dc91-45e2-a428-848a34be7540","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"5ededefe-d529-48cb-9c4e-2bc91ce2e6c5","keyword":"耐磨性","originalKeyword":"耐磨性"},{"id":"5cb2c272-25d3-4451-810c-672a8c358b2f","keyword":"TiC颗粒","originalKeyword":"TiC颗粒"},{"id":"1753082f-af68-4bf1-9e11-4ad5bc6ce74b","keyword":"合金层","originalKeyword":"合金层"}],"language":"zh","publisherId":"jxgccl201504010","title":"TiC颗粒对铁-碳-铬-硅合金堆焊层显微组织及耐磨性的影响","volume":"39","year":"2015"},{"abstractinfo":"以含硼生铁为原料直接冶炼硼钢新工艺的关键问题是硼、硅及碳的氧化规律.利用中频感应炉,刚玉坩埚盛装试样,研究了吹氧条件下,温度为(1 723士25)K时Fe-C-Si、Fe-C-B合金熔体及含硼高硅铁液中碳的氧化规律.结果表明:对于Fe-C-Si熔体,在熔炼开始的15 min内,主要是硅氧化,其氧化率达到88%.之后,碳和硅同时氧化,碳氧化呈线性规律,熔炼进行25 min时,碳的氧化率为44%;对于Fe-C-B合金熔体,硼与碳同时氧化,碳的氧化规律呈线性,但其氧化速率比硼慢得多.熔炼进行27 min时,硼的氧化率已达到96%,而碳的氧化率仅为22%;对于含硼高硅铁液,在熔炼进行的40 min之前,主要是硼和硅氧化,其氧化率分别达到94%和99%.之后,碳、硼、硅同时氧化,碳氧化呈线性规律,当熔炼进行到60 min时,碳的氧化率为93%.","authors":[{"authorName":"杨中东","id":"40353996-29e2-428e-9a1f-c7c999cfd5bd","originalAuthorName":"杨中东"},{"authorName":"刘素兰","id":"74917b03-b992-4275-a490-34ca25938c7d","originalAuthorName":"刘素兰"},{"authorName":"薛向欣","id":"a137b130-6be2-436f-b322-2c9672002359","originalAuthorName":"薛向欣"},{"authorName":"畅惠明","id":"bcfa6224-454e-4228-ab0e-907ce3261006","originalAuthorName":"畅惠明"},{"authorName":"鲁平","id":"ea3b0036-5ed4-4076-a3eb-00a9cbca5a6c","originalAuthorName":"鲁平"},{"authorName":"马贺利","id":"5c8b450f-3371-4aa0-9233-38cf4a58e5b1","originalAuthorName":"马贺利"}],"doi":"","fpage":"6","id":"47d9a580-4685-4140-927e-2706b9644600","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"43769fe0-6922-4899-8d5f-6c37fb7b76df","keyword":"含硼铁液","originalKeyword":"含硼铁液"},{"id":"7861e754-e973-4bcc-8b79-8db6d44603cd","keyword":"吹氧","originalKeyword":"吹氧"},{"id":"4d1ff9e2-a0cb-4c72-8353-7eaf7d160c88","keyword":"碳","originalKeyword":"碳"},{"id":"363b781b-438e-434b-b4a1-a948ea228ef8","keyword":"氧化","originalKeyword":"氧化"}],"language":"zh","publisherId":"gtyjxb200604002","title":"含硼高硅铁液中碳的氧化规律","volume":"18","year":"2006"}],"totalpage":5281,"totalrecord":52809}