{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"硅材料具有良好的力学稳定性和热稳定性,作为表面分子印迹聚合物的载体具有较大的优势.以硅材料为载体的表面分子印迹聚合物(SSMIP)是目前分子印迹技术领域的研究重点之一.着重对最近几年SSMIP的制备方法进行总结与评述,主要包括接枝共聚法、活性可控自由基聚合法、牺牲硅胶骨架法和溶胶-凝胶法等,并对SSMIP的应用和未来发展进行了展望.","authors":[{"authorName":"张进","id":"37fe21e7-c451-4d16-97e3-a5aca8b048e7","originalAuthorName":"张进"},{"authorName":"曹丹","id":"3bba8c29-f416-4239-9ec4-e4d9ef049d64","originalAuthorName":"曹丹"},{"authorName":"陈家美","id":"4fa238bf-7571-4864-8db6-c8ad4aabd3a8","originalAuthorName":"陈家美"},{"authorName":"王超英","id":"6ab290b8-a1a6-4b95-8745-7fb7184efa64","originalAuthorName":"王超英"}],"doi":"","fpage":"55","id":"14426c8c-d8d7-4bff-bc29-68acfc030c49","issue":"19","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1e7abb86-47c2-4aa2-9d77-519d183f8ce8","keyword":"硅材料","originalKeyword":"硅材料"},{"id":"17b61b09-d5d3-4b66-aacd-c4d8badfa476","keyword":"表面分子印迹","originalKeyword":"表面分子印迹"},{"id":"8848bef4-75af-432a-b80f-eaf63fd5dfc6","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"26b41a3f-88c4-452b-8410-7a016733a94e","keyword":"接枝共聚","originalKeyword":"接枝共聚"},{"id":"51428bdc-67b7-4db7-bc41-6ede37e01804","keyword":"活性可控自由基聚合","originalKeyword":"活性可控自由基聚合"},{"id":"d4d78af2-3ea0-44b3-ab62-14af79e94ec8","keyword":"牺牲硅胶骨架","originalKeyword":"牺牲硅胶骨架"},{"id":"35d9ac32-b51b-4ac8-921e-6eeb059e4a3b","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"}],"language":"zh","publisherId":"cldb201319012","title":"以硅材料为载体的表面分子印迹技术研究新进展","volume":"27","year":"2013"},{"abstractinfo":"以盐酸黄连素(berberine-C1)为模板分子,硅胶牺牲载体,甲基丙烯酸(MAA)或4-乙烯基吡啶(4-VP)、二甲基丙烯酸乙二醇酯(EDMA)及偶氮二异丁腈(AIBN)分别为功能单体、交联剂及引发剂制备了黄连素印迹聚合物。用光学显微镜观察了聚合物形貌,红外光谱(IR)研究了印迹聚合物(Mip)对模板分子的再结合性能。静态吸附法及Scatchard分析研究了模板在聚合物上的结合特性。结果表明,以MAA为功能单体制备的黄连素印迹聚合物对模板分子有较高的再结合能力,其选择亲和特性来源于聚合物基体中大量在大小、形状及功能基诸方面与模板相匹配的键合位点。由Scatchard图得到了聚合物中两类结合位点的平衡离解常数(Ka)和最大吸附量(qmax)。","authors":[{"authorName":"李辉","id":"faddd9c4-7928-4cff-817f-ab135742f20e","originalAuthorName":"李辉"},{"authorName":"李玉琢","id":"2db3459e-3b09-4b86-b36e-c6bbff518830","originalAuthorName":"李玉琢"},{"authorName":"李志平","id":"533619f8-6f69-4390-9f9d-c05808851712","originalAuthorName":"李志平"},{"authorName":"李亚男","id":"e1e5d7da-deeb-448e-ac44-3fb325c22006","originalAuthorName":"李亚男"},{"authorName":"彭夕洋","id":"e94ade34-10f9-4415-8373-191debc78cdb","originalAuthorName":"彭夕洋"}],"doi":"","fpage":"684","id":"f3a07722-9751-413b-bc31-4e0e3545965e","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a347425f-3534-4f95-a35f-abc864375150","keyword":"分子印迹技术","originalKeyword":"分子印迹技术"},{"id":"51c5898e-910e-46f0-8f0f-15464867e590","keyword":"盐酸黄连素","originalKeyword":"盐酸黄连素"},{"id":"169fe07e-c2eb-4ade-95a8-f392cdfa1820","keyword":"牺牲硅胶法","originalKeyword":"牺牲硅胶法"},{"id":"53a9327d-a0b2-48a9-ac62-55fa8ce19be7","keyword":"分子印迹聚合物","originalKeyword":"分子印迹聚合物"},{"id":"201cdad1-a2c2-4716-b596-5eab54dde5ee","keyword":"再结合","originalKeyword":"再结合"}],"language":"zh","publisherId":"gncl201206002","title":"牺牲硅胶骨架法制备盐酸黄连素印迹聚合物及其性能研究","volume":"43","year":"2012"},{"abstractinfo":"简述了分子印迹聚合物传统合成方法存在的问题以及表面修饰的分子印迹合成方法新进展,重点介绍了基于硅胶表面修饰的4种分子印迹聚合物合成方法:牺牲硅胶骨架法、水解缩聚法、化学气相沉积法和接枝共聚法,及其在处理放射性污水、毛细管电色谱、高效液相色谱和催化等方面的应用.","authors":[{"authorName":"徐伟箭","id":"14fbdee0-f390-4e71-8446-4f6bfe03ec9e","originalAuthorName":"徐伟箭"},{"authorName":"项伟中","id":"c46d9d42-7a07-49d4-9c21-52540a8b56c8","originalAuthorName":"项伟中"},{"authorName":"周晓","id":"1da28cb4-ce15-44a5-82b4-0f3c23bc2fb3","originalAuthorName":"周晓"},{"authorName":"徐丰","id":"e4811762-28a3-4591-996d-d870cb9b54ce","originalAuthorName":"徐丰"}],"doi":"10.3969/j.issn.1000-0518.2003.10.001","fpage":"919","id":"d0a31aa1-3e36-454b-adea-b8ff14ebcf10","issue":"10","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"8ab549c9-af10-4bcb-bb00-6110e89e3905","keyword":"硅胶","originalKeyword":"硅胶"},{"id":"989b6bd1-54fb-446a-9f14-d5e0b097a87a","keyword":"表面修饰","originalKeyword":"表面修饰"},{"id":"417f5ee0-e4a2-495b-b0c0-77269608924f","keyword":"分子印迹技术","originalKeyword":"分子印迹技术"},{"id":"07677082-dd77-42e8-a92a-02bdc672e8a4","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"yyhx200310001","title":"基于硅胶表面修饰的分子印迹技术研究进展","volume":"20","year":"2003"},{"abstractinfo":"陶瓷纤维纸经水玻璃、酸性铝盐溶液顺次浸渍得到新型铝改性硅胶吸附材料.反应的优化条件为:水玻璃浓度26.6wt%、铝盐浓度10wt%、溶液pH值1.8.29Si和27AlMASNMR谱显示:铝替代硅进入SiO4硅氧四面体结构单元,但并不影响其骨架结构;红外光谱显示Si-OH对称伸缩振动峰由968cm-1移至Si(Al)-OH的954cm-1;扫描电镜图表明铝改性硅胶能较好地分散在瓦楞陶瓷纤维表面及其孔隙中;X射线能谱(EDS)揭示材料表面微区Al3+的存在与含量;孔隙分析显示材料起吸附作用的主要为中孔;由于铝离子改性,新型吸附材料的吸附性能、耐热性能及机械强度等均优于同等条件下反应生成的硅胶.","authors":[{"authorName":"方玉堂","id":"d82f1802-8727-438c-8e42-262d6f5b8767","originalAuthorName":"方玉堂"},{"authorName":"丁静","id":"f82e5e0f-8e7a-4345-80d4-ce43e698db50","originalAuthorName":"丁静"},{"authorName":"范娟","id":"88d753ab-f04c-42df-8dc6-dce4bf8a05f2","originalAuthorName":"范娟"},{"authorName":"杨建平","id":"a99ce72f-b006-4a3c-b402-9848bc764daa","originalAuthorName":"杨建平"},{"authorName":"杨晓西","id":"1d49690b-04b7-4496-9264-817954fd8104","originalAuthorName":"杨晓西"}],"doi":"10.3321/j.issn:1000-324X.2005.04.027","fpage":"933","id":"fe709a37-4c10-4aba-9493-af46482f35af","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"831e1587-39a3-471c-8aa2-39497139ab85","keyword":"吸附","originalKeyword":"吸附"},{"id":"6dc0a427-5094-4fe4-8777-ddcf177979c1","keyword":"铝改性硅胶","originalKeyword":"铝改性硅胶"},{"id":"d8d7b8e9-5430-4f4b-b3e3-fd59c63f9c8f","keyword":"耐热性能","originalKeyword":"耐热性能"},{"id":"d6a239f6-b0d0-4f54-873b-0044847b1e69","keyword":"机械强度","originalKeyword":"机械强度"}],"language":"zh","publisherId":"wjclxb200504027","title":"新型铝改性硅胶吸附材料的制备与性能","volume":"20","year":"2005"},{"abstractinfo":"铝合金牺牲阳极具有许多优点,近年来得到了广泛的应用.介绍了铝合金牺牲阳极材料中常用合金元素的作用、铝合金牺牲阳极的活化机理、主要的几类铝阳极材料、铝合金牺牲阳极应用概况以及发展前景.","authors":[{"authorName":"屈钧娥","id":"b644f7e7-4698-4192-af2b-bfeef415afff","originalAuthorName":"屈钧娥"},{"authorName":"齐公台","id":"87200b3a-830f-4a3a-8d52-d6e68cce2227","originalAuthorName":"齐公台"}],"doi":"","fpage":"24","id":"87d0a37b-56b3-4e52-8127-26182491026c","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"27496a6e-f5f1-4bab-b073-cd6a233c666b","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"9290906e-91a0-4ef8-a982-0e6d366c3056","keyword":"牺牲阳极","originalKeyword":"牺牲阳极"},{"id":"04ecc293-bf3d-42be-98f6-ca24c370aaa8","keyword":"活化机理","originalKeyword":"活化机理"}],"language":"zh","publisherId":"cldb200111009","title":"铝合金牺牲阳极材料研究现状","volume":"15","year":"2001"},{"abstractinfo":"介绍了硅胶仿生合成中硅前体和有机大分子添加剂的类型及其作用机制,重点讨论了纳米硅胶仿生合成的影响因素.硅前体主要影响硅胶形成的动力学速度,对于一定的硅前体,尤其是有机硅前体,溶液的pH、预水解时间、硅前体的浓度、反应时间、反应温度和搅拌速率等都是控制硅胶产物形成的因素.有机大分子添加剂主要对硅胶的晶核形成和长大起到定向模板的诱导作用,是决定硅胶粒子大小、结构和形态的主要因素,来自生物体或仿生合成的有机聚阳离子或能与硅氧离子形成氢键的聚合物是理想的添加剂类型.反应介质的性质能对有机大分子添加剂的诱导作用产生一定的影响.","authors":[{"authorName":"蒋海明","id":"bd92f5ec-6aec-46a5-bfd5-8b66539591df","originalAuthorName":"蒋海明"},{"authorName":"夏金兰","id":"8e4e14b0-258c-4702-9e8f-bfa3b0140d39","originalAuthorName":"夏金兰"},{"authorName":"聂珍媛","id":"c6a2772a-8605-466d-ab3f-6663f5a6b195","originalAuthorName":"聂珍媛"}],"doi":"","fpage":"30","id":"d85ed9ac-f547-4d41-997e-68ebe5e7add9","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"87bd8760-6522-4b84-a271-591383d75c36","keyword":"仿生合成","originalKeyword":"仿生合成"},{"id":"43ee375e-8e27-4525-903b-59c67d6fd09a","keyword":"纳米硅胶","originalKeyword":"纳米硅胶"},{"id":"d8ab25ca-4790-443e-9ebf-affc9fbf84fd","keyword":"(生物)大分子","originalKeyword":"(生物)大分子"},{"id":"52ffe77c-422f-4255-8ade-5a7c7981ef16","keyword":"硅前体","originalKeyword":"硅前体"}],"language":"zh","publisherId":"cldb200604009","title":"纳米硅胶的仿生合成研究","volume":"20","year":"2006"},{"abstractinfo":"针对国内外铝合金牺牲阳极的研究和使用情况,回顾性地分析了铝合金牺牲阳极的发展过程;综述了合金元素和热处理工艺对铝合金牺牲阳极电化学性能的影响及铝合金牺牲阳极的溶解活化机制等方面的最新研究成果; 指出了铝合金牺牲阳极研究存在的问题及发展方向.","authors":[{"authorName":"孔小东","id":"9816747e-75ff-493f-8a87-974a6d25109f","originalAuthorName":"孔小东"},{"authorName":"朱梅五","id":"090e612a-7305-46e3-a7dc-3a8ec47ce03d","originalAuthorName":"朱梅五"},{"authorName":"丁振斌","id":"618e4634-e6a1-454f-b9ea-5a1925837faa","originalAuthorName":"丁振斌"},{"authorName":"郑家燊","id":"06b3ef3e-4c41-4456-bc52-d8827e78e6b4","originalAuthorName":"郑家燊"}],"doi":"10.3969/j.issn.0258-7076.2003.03.015","fpage":"376","id":"4df0264d-75da-4d7c-979e-7e97c2ed8953","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"39c46ad8-a1ed-4913-b18a-683eea5c14db","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"a17b0c14-a5e8-4b84-8a66-7d970197a7c7","keyword":"牺牲阳极","originalKeyword":"牺牲阳极"},{"id":"3a1545df-b18e-4b66-b0c4-c6538d476947","keyword":"合金元素","originalKeyword":"合金元素"},{"id":"89b11f69-ae41-4c9e-a6e4-39c58fc34790","keyword":"活化机制","originalKeyword":"活化机制"},{"id":"38cf3205-a074-4ad0-8fe3-eb9cb934e930","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"xyjs200303015","title":"铝合金牺牲阳极研究进展","volume":"27","year":"2003"},{"abstractinfo":"综述了牺牲阳极材料的研究现状和目前常用的铝基、锌基和镁基等三种牺牲阳极材料的基本化学成分和性能特点,分析了合金元素的作用,并对牺牲阳极的一些新发展和应用情况作了介绍.","authors":[{"authorName":"宋曰海","id":"cf8b43da-3758-468a-8a03-7f76d5248c25","originalAuthorName":"宋曰海"},{"authorName":"郭忠诚","id":"3a151c91-7d02-48f9-8794-5cef3daeb9cd","originalAuthorName":"郭忠诚"},{"authorName":"樊爱民","id":"66d118d0-0705-42c3-8a6f-0ffc10a35699","originalAuthorName":"樊爱民"},{"authorName":"龙晋明","id":"7fe33247-9032-4eb6-a37c-58af519cb5b9","originalAuthorName":"龙晋明"}],"doi":"10.3969/j.issn.1002-6495.2004.01.007","fpage":"24","id":"a16497c8-d699-420a-a31a-f7a5d3fb80b5","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"41ec9aed-de23-46f4-9ea9-f813dc615acb","keyword":"牺牲阳极","originalKeyword":"牺牲阳极"},{"id":"aebeec56-bd72-411a-89a7-ea0f3b46e9a0","keyword":"阴极保护","originalKeyword":"阴极保护"},{"id":"716bf344-df9c-45e4-b2a0-bf1d39532643","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"7f4dfb98-461c-4c37-a9f2-81173536099b","keyword":"锌合金","originalKeyword":"锌合金"},{"id":"51f99a75-2c57-435f-ac24-75581c7c6d3f","keyword":"镁合金","originalKeyword":"镁合金"}],"language":"zh","publisherId":"fskxyfhjs200401007","title":"牺牲阳极材料的研究现状","volume":"16","year":"2004"},{"abstractinfo":"根据雷达天线骨架所处的腐蚀环境,设计了相应的防腐配套方案以及表面处理、电弧喷锌和喷底、面漆等涂装工艺技术参数。认为雷达在使用过程中处于C5甚至C5-M的严重腐蚀大气环境的概率较高,应以环氧或聚氨酯漆为电弧喷锌层的封闭涂层(膜厚25~30 mm,不计入规定的膜厚),并适当增加锌层上中层漆和面漆的膜厚,并推广应用抛丸除锈法和无气喷涂法以提高涂装质量,延长雷达的使用寿命。","authors":[{"authorName":"李敏风","id":"ea46fc4d-42e7-442f-9c36-b7ab3851c48e","originalAuthorName":"李敏风"}],"doi":"","fpage":"21","id":"d0475c31-7347-48b7-bfcb-9ba7b13e4910","issue":"2","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"8a680566-7da4-49e7-a135-af51444f45b9","keyword":"雷达天线骨架","originalKeyword":"雷达天线骨架"},{"id":"2f5197d4-4bea-4457-8706-afef6f5696d0","keyword":"防腐","originalKeyword":"防腐"},{"id":"c4cbc62d-995a-443e-ba86-500b280ad443","keyword":"抛丸","originalKeyword":"抛丸"},{"id":"bf63f781-9326-4f5a-8acc-7dcd345ffc51","keyword":"电弧喷锌","originalKeyword":"电弧喷锌"},{"id":"d1adaae1-a562-4b8a-affc-e15f70e76913","keyword":"无气喷涂","originalKeyword":"无气喷涂"}],"language":"zh","publisherId":"ddyts201502005","title":"雷达天线骨架涂装工艺","volume":"","year":"2015"},{"abstractinfo":"将陶瓷纤维纸用水玻璃和铝盐溶液等浸渍制备出新型Al$^{3+}$掺杂硅胶吸附材料,\n研究了Al$^{3+}$ 掺杂对硅胶吸附材料性能的影响.\n傅立叶变换红外谱、扫描电子显微镜及X射线能谱(SEM--EDS)揭示吸附材料中掺杂\nAl$^{3+}$的存在及其含量; 多孔介质孔隙分析显示,\n一定程度的Al$^{3+}$掺杂可提高材料的比表面积和孔容, 影响其孔径结构及分布,\n增加活性吸附位, 从而提高了材料的吸附性能,\n在材料表面形成的Al--O--Si键增强了材料表面孔道骨架支撑力, 提高了表面导热性,\n使其耐热性能、耐破指数和裂断长显著提高.","authors":[{"authorName":"方玉堂","id":"75c197c6-a157-472c-92eb-3cb02c579441","originalAuthorName":"方玉堂"},{"authorName":"梁向晖","id":"e2a9e690-44fc-4b7a-ad2b-47cc15958f4a","originalAuthorName":"梁向晖"},{"authorName":"范娟","id":"1f108455-11a9-482b-a28e-44c385cec358","originalAuthorName":"范娟"}],"categoryName":"|","doi":"","fpage":"641","id":"ba894390-5920-4daf-89ac-7dd601e6d87f","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"9fee1468-4138-4f6f-985a-eba8557b7681","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"463ffbbd-9401-4b3b-91f2-fa74a708007c","keyword":"silica gel","originalKeyword":"silica gel"},{"id":"c92f50e1-4dbd-4df8-928c-c71a392efb1a","keyword":"Al3+ doped","originalKeyword":"Al3+ doped"},{"id":"612d98dc-9efd-44e1-b877-d9a5a1514486","keyword":"adsorption","originalKeyword":"adsorption"},{"id":"425163fa-7557-41ae-b05f-70df2f221391","keyword":"heat resisting property","originalKeyword":"heat resisting property"}],"language":"zh","publisherId":"1005-3093_2004_6_11","title":"Al$^{3+}$掺杂对硅胶吸附材料性能的影响","volume":"18","year":"2004"}],"totalpage":193,"totalrecord":1927}