{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"提出了一种新结构液压缸--ZC型液压缸(锥面法兰支承液压缸).对该新结构液压缸进行了弹性理论研究,提出了理论计算方法;实验与理论计算吻合较好.新结构液压缸为解决大型液压缸法兰破坏问题提供了一条有效途径.","authors":[{"authorName":"赵长财","id":"67b455bd-6329-4859-9a4e-8815a8824458","originalAuthorName":"赵长财"},{"authorName":"孙惠学","id":"d765112c-d8a7-427b-bdfd-155fb76e19d8","originalAuthorName":"孙惠学"},{"authorName":"袁荣娟","id":"1073a761-7bae-4a41-b4be-bd188593394d","originalAuthorName":"袁荣娟"},{"authorName":"刘助柏","id":"b11a2750-9538-4eb8-994d-bd7e116a46be","originalAuthorName":"刘助柏"}],"doi":"","fpage":"0","id":"95d20750-a713-499e-8a23-d1ff927d20e2","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"c6cb05e6-4b93-4e81-81b9-bd461b150338","keyword":"液压缸","originalKeyword":"液压缸"},{"id":"1906e3da-47db-4a63-8e95-fa81d150af02","keyword":"锥面","originalKeyword":"锥面"},{"id":"6ed53571-e9a8-4bdc-b56e-860f282462f9","keyword":"应力","originalKeyword":"应力"}],"language":"zh","publisherId":"gt199804016","title":"ZC型液压缸的研究","volume":"33","year":"1998"},{"abstractinfo":"为了解四辊轧机在轧制过程中液压缸的非线性刚度约束作用,建立了非线性刚度作用下的轧机辊系两自由度垂直振动动力学模型.依据达朗贝尔原理得到含有液压缸非线性刚度的轧机辊系垂直振动方程,运用平均法求得振动系统的幅频响应.以轧机的实际参数为例,分析液压缸非线性刚度、外激励对轧机系统幅频响应的影响,并研究在不同非线性刚度下的轧机振动行为.结果表明,液压缸非线性刚度越大,轧机系统越不稳定;液压缸非线性刚度较弱时,轧机振动行为会逐渐收敛于稳定,液压缸非线性刚度较强时,轧机振动行为会处于不稳定状态,并且出现发散现象,这为抑制轧机振动提供了理论参考.","authors":[{"authorName":"刘彬","id":"1ab07ca3-eee8-452f-a04d-dd8fb3ba0731","originalAuthorName":"刘彬"},{"authorName":"潘贵翔","id":"6a2649fa-22eb-42e8-a572-d6e6c67f0f68","originalAuthorName":"潘贵翔"},{"authorName":"李鹏","id":"57f18c91-123b-4e5e-82d4-5d0829bbe677","originalAuthorName":"李鹏"},{"authorName":"刘浩然","id":"088057d5-572e-43ce-a913-a587ac8456c0","originalAuthorName":"刘浩然"},{"authorName":"姜甲浩","id":"ce0f7fe1-9940-46a9-ae2b-25ee3033860a","originalAuthorName":"姜甲浩"}],"doi":"10.13228/j.boyuan.issn0449-749x.20160273","fpage":"93","id":"f665999a-0627-46ea-b90b-b66f0e854cc5","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"980dd0f8-7ae3-44eb-9a9e-679902691e06","keyword":"液压缸","originalKeyword":"液压缸"},{"id":"7566c2bd-bad4-4c10-9da1-ce67572f7846","keyword":"非线性刚度","originalKeyword":"非线性刚度"},{"id":"d29ead69-e289-416c-9b04-27f538a34f67","keyword":"轧机振动","originalKeyword":"轧机振动"},{"id":"d99734d1-0372-4583-85fd-0ea94deaae63","keyword":"幅频特性","originalKeyword":"幅频特性"}],"language":"zh","publisherId":"gt201703017","title":"液压缸非线性刚度的轧机辊系振动分析","volume":"52","year":"2017"},{"abstractinfo":"介绍了采用圆锥型缓冲装置的高速液压缸缓冲过程的理论分析和试验结果.认为整个缓冲过程可分为断面收缩局部压力损失、锐缘节流、缝隙节流三个阶段,并建立了该过程的数学模型,利用数学模型,分析了圆锥柱塞结构参数对缓冲速度及缓冲腔压力的影响.","authors":[{"authorName":"丁凡","id":"001837f9-adda-41c9-a176-660460d8e1e7","originalAuthorName":"丁凡"}],"doi":"","fpage":"0","id":"3c9976f9-4a85-4060-aaca-a6e26d16f796","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"96ac61e0-0fd4-4e31-9e61-70835421dfca","keyword":"液压系统","originalKeyword":"液压系统"},{"id":"c838b196-362b-4e50-b5b9-819017527d73","keyword":"液压缸","originalKeyword":"液压缸"},{"id":"d5611bab-f443-4af5-991b-76f3505e96f5","keyword":"缓冲过程","originalKeyword":"缓冲过程"}],"language":"zh","publisherId":"gt199808015","title":"高速液压缸缓冲过程的研究","volume":"33","year":"1998"},{"abstractinfo":"以国内某厂板坯连铸机的在线脱锭装置设计为例子,简单分析和计算脱锭力以及如何正确选择液压缸,重点分析在线脱锭的整个工作过程,为设计在线脱锭装置提供理论依据.","authors":[{"authorName":"王文学","id":"febda1fb-df3f-4c8d-97f0-4de34b37756b","originalAuthorName":"王文学"},{"authorName":"刘彩玲","id":"93521398-3ef8-4855-997a-aedba68fa385","originalAuthorName":"刘彩玲"},{"authorName":"杨超武","id":"da73ceb0-56d1-46b0-ad8b-9387fceaea8e","originalAuthorName":"杨超武"}],"doi":"10.3969/j.issn.1005-4006.2007.05.009","fpage":"25","id":"c43945e2-f364-4199-be50-5c42e64fe183","issue":"5","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"ed0626a9-1489-4286-bf34-21b607efcd2e","keyword":"在线脱锭系统","originalKeyword":"在线脱锭系统"},{"id":"1e47100b-d847-4902-a9bd-f7e56ee3a206","keyword":"脱锭力","originalKeyword":"脱锭力"},{"id":"9b43df17-8821-48f5-81d6-892f141ab3a4","keyword":"液压缸","originalKeyword":"液压缸"},{"id":"e179936f-cd95-41ca-8d4c-b51e0981cab1","keyword":"引锭杆","originalKeyword":"引锭杆"}],"language":"zh","publisherId":"lz200705009","title":"连铸在线脱锭装置的理论计算和分析","volume":"","year":"2007"},{"abstractinfo":"利用电化学极化曲线测试结合浸泡加速腐蚀试验,对比研究了液压缸钢材在由不同质量浓度浓缩液和不同水质配制的乳化液中的腐蚀行为.结果表明,大柳塔煤矿矿井水中高氯离子含量是导致钢材在采用工况水配置乳化液中钢材耐蚀能力下降的主要因素;随着乳化液中浓缩液含量的提高,钢的点蚀电位正移,试样点蚀数目减少,乳化液缓蚀率提高;耐蚀合金元素含量较高的5号钢具有相对较好的耐蚀能力.","authors":[{"authorName":"赵晋斌","id":"23528e2f-cf5c-40b3-9da1-f3798e339bc3","originalAuthorName":"赵晋斌"},{"authorName":"刘明","id":"12dd504e-a571-4333-bc83-1a729d2342b1","originalAuthorName":"刘明"},{"authorName":"蔡佳兴","id":"e2d2e3bb-364c-41c1-9645-b940f78c8549","originalAuthorName":"蔡佳兴"},{"authorName":"杨文秀","id":"e9cd7830-6349-42c4-94c3-e9e23c0ef08d","originalAuthorName":"杨文秀"}],"doi":"10.11973/fsyfh-201511010","fpage":"1058","id":"cceb9b3d-ed87-4b58-b2b2-b0eb6b77c970","issue":"11","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"47718688-5814-406c-b10e-572d815441be","keyword":"乳化液","originalKeyword":"乳化液"},{"id":"d00f0812-b35c-4927-8ff9-d86f540150a1","keyword":"浓缩液","originalKeyword":"浓缩液"},{"id":"0f40e1ba-07f7-49bf-a1b9-4c8356091226","keyword":"极化曲线","originalKeyword":"极化曲线"},{"id":"45bd5354-8570-4ee4-a7b9-4b40be33a757","keyword":"点蚀电位","originalKeyword":"点蚀电位"},{"id":"3776de12-b15e-45f3-81fc-a58899b5a693","keyword":"浸泡试验","originalKeyword":"浸泡试验"}],"language":"zh","publisherId":"fsyfh201511010","title":"乳化液对液压缸钢材腐蚀行为的影响","volume":"36","year":"2015"},{"abstractinfo":"","authors":[{"authorName":"周旭辉","id":"825baedf-369a-4055-9321-8ab6582065dd","originalAuthorName":"周旭辉"},{"authorName":"李静","id":"0b8e5a84-4edb-4e62-8823-1f0d7ba2a1ee","originalAuthorName":"李静"},{"authorName":"刘志清","id":"5379560b-a185-4168-8827-5d24145d7e66","originalAuthorName":"刘志清"}],"doi":"10.3969/j.issn.1000-6826.2013.04.017","fpage":"51","id":"41092542-9c70-417a-8033-60c2b6171b76","issue":"4","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"e2b7dc0d-184a-4cf1-9671-a729ccf82103","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"jssj201304016","title":"液压缸清洗试验机液压系统设计方案","volume":"","year":"2013"},{"abstractinfo":"根据带钢性能和工艺开发的要求,开发了机架前后配置张力液压缸的直拉式冷轧实验机.通过设置张力控制器直接对实际张力进行闭环控制的方式,无法实现张力液压缸速度与轧制速度的匹配,也无法满足动态下高精度且稳定的张力控制要求.针对此问题,通过对张力液压缸流量方程的研究,提出了基于流量预估的液压张力控制策略.流量预估控制精确计算出同时满足张力液压缸移动速度和设定张力的伺服阀控制电流,同时对控制因子进行在线修正以获得最优预估控制效果.动态张力补偿控制补偿预估控制后剩余的张力偏差.现场应用效果表明,该策略取得了良好的控制效果,动态下张力控制误差小于±3%.","authors":[{"authorName":"张浩宇","id":"7a2c0a74-8f16-4d8f-a3b5-6baa6d7408a7","originalAuthorName":"张浩宇"},{"authorName":"孙杰","id":"0b0753ec-b856-42f7-bf48-6e650aa065f3","originalAuthorName":"孙杰"},{"authorName":"张殿华","id":"d2ada4b3-af8f-4e02-88d0-6117365480a8","originalAuthorName":"张殿华"},{"authorName":"曹剑钊","id":"c3352b84-dc95-4ac7-a953-7c1d2f50596a","originalAuthorName":"曹剑钊"}],"doi":"","fpage":"283","id":"b4224677-371d-412a-96d3-7faede28eda9","issue":"4","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"9a167288-4ee3-49c3-be4b-02c99cbaa7cf","keyword":"直拉式冷轧实验机","originalKeyword":"直拉式冷轧实验机"},{"id":"6b1682ff-6e9f-4753-ac67-5bd29c2545ad","keyword":"液压张力控制","originalKeyword":"液压张力控制"},{"id":"15e272f2-0ed3-4f94-8dc2-d7f08153aa14","keyword":"流量预估控制","originalKeyword":"流量预估控制"},{"id":"1132561d-cab6-40a5-83fd-17e4e9a5b20f","keyword":"动态张力补偿控制","originalKeyword":"动态张力补偿控制"},{"id":"381d124e-4d59-4a30-9ce7-4ca4021bece3","keyword":"控制因子修正","originalKeyword":"控制因子修正"}],"language":"zh","publisherId":"clyyjxb201304011","title":"基于流量预估的直拉式冷轧机液压张力控制策略","volume":"12","year":"2013"},{"abstractinfo":"大方坯连铸液压振动装置是近年来被开发并逐渐推广应用的一种先进连铸设备.通过分析该液压振动装置的结构特点,得出导向板簧和液压缸的安装角度与它们各自中心点相对于连铸机中心点的位置有关,并推导出了液压缸最大工作驱动力的计算公式.由于液压振动的控制系统采用闭环控制方式,并配有独立式专用模块式PLC,因此液压振动具有精度高、动态反应能力快速、可靠性高等优点.","authors":[{"authorName":"江浪","id":"5bb2ec2e-8eff-4b07-ab51-ab066c647255","originalAuthorName":"江浪"}],"doi":"10.13228/j.boyuan.issn1005-4006.20150132","fpage":"47","id":"d0f7cc90-c906-4363-a641-cbfcb7fa0657","issue":"3","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"4acd0696-e5dc-48dc-a49f-effa1c6554c5","keyword":"大方坯","originalKeyword":"大方坯"},{"id":"4dfdbd1e-c424-47dd-b3b9-8b58a926fb73","keyword":"连铸","originalKeyword":"连铸"},{"id":"d339b725-115a-44d9-a05c-033738ebd7fd","keyword":"液压振动","originalKeyword":"液压振动"}],"language":"zh","publisherId":"lz201603011","title":"大方坯连铸液压振动装置分析与研究","volume":"41","year":"2016"},{"abstractinfo":"本文主要针对酒钢中板厂定尺剪钢板压紧缸液压系统经常出现冲击抖动、管路泄漏,甚至造成胶管涨裂这一严重影响系统的稳定性和安全性的现实问题.从液压冲击的产生机理出发,有针对性的进行具体的理论分析,最终证明该设计在耐冲击性方面存在明显的不足之处,并提出改进措施,现场实践证明很好的解决了这一问题.","authors":[{"authorName":"乔志花","id":"ce04ca3c-846f-4afb-baf3-d30c43bb49f5","originalAuthorName":"乔志花"}],"doi":"10.3969/j.issn.1000-6826.2007.05.021","fpage":"59","id":"e1325c3f-9263-4ba1-99bc-8bcf7f62ed70","issue":"5","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"aab796aa-e23a-43e2-95ea-51e1ef602aa2","keyword":"中板","originalKeyword":"中板"},{"id":"807fa7ef-9096-4e27-a2dd-52d0e3cf79ab","keyword":"定尺剪","originalKeyword":"定尺剪"},{"id":"1081d6ac-a648-40bd-ab78-e6708d908d26","keyword":"钢板压紧缸","originalKeyword":"钢板压紧缸"},{"id":"5691e557-d0e8-4510-8792-7378b69c36dc","keyword":"液压冲击","originalKeyword":"液压冲击"},{"id":"b314bb5f-dd30-4c99-9e5e-a52c7896e6ad","keyword":"分析","originalKeyword":"分析"}],"language":"zh","publisherId":"jssj200705021","title":"酒钢中板定尺剪钢板压紧缸液压系统的冲击分析","volume":"","year":"2007"},{"abstractinfo":"垛板台是保证板坯连续生产的重要设备.主要设备故障是液压系统造成的,通过对板坯垛板台液压系统故障进行分析,找出液压缸上飘、溜车、泄漏的主要原因,提出故障处理方法和改进建议.为同类设备的运行维护提供参考意见,保证设备稳定运行.","authors":[{"authorName":"陈永民","id":"9b00ed31-07b1-4ee4-bf65-d1af0c264bd6","originalAuthorName":"陈永民"}],"doi":"10.13228/j.boyuan.issn1005-4006.20140039","fpage":"28","id":"7e7d7d8b-751a-421b-8715-17f9a12ec4df","issue":"6","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"e8160d3e-aa18-48a7-8d21-1dd88402917a","keyword":"垛板台","originalKeyword":"垛板台"},{"id":"5706d8fd-11dd-4c58-bfcc-f18c080cb6f8","keyword":"液压系统","originalKeyword":"液压系统"},{"id":"ab076cfd-716e-4f70-8d9d-d41ae1ee7b15","keyword":"故障分析","originalKeyword":"故障分析"},{"id":"61da5fa0-b306-4735-a6c2-a65dc05285bc","keyword":"改进","originalKeyword":"改进"}],"language":"zh","publisherId":"lz201406007","title":"垛板台液压系统故障分析及改进","volume":"","year":"2014"}],"totalpage":67,"totalrecord":664}