{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"Sr2 MgSi2 O7∶Eu2+,Dy3+存在热稳定性不好、热劣化机理不明确的问题,为了探讨其热劣化机理,在不同温度下对其进行热处理,表征了余辉性能和光谱性质,研究了热处理温度对余辉性能和发射强度的影响。结果表明,当热处理温度低于600℃时,余辉性能变化不明显,发射强度随热处理温度升高而缓慢降低;而高于600℃的热处理温度可以使余辉性能显著劣化,且随热处理温度的升高,发射强度呈现先增大后减小趋势,并在900℃附近出现极大值。上述余辉性能劣化和发射强度变化的根本原因是陷阱能级捕获电子能力的减弱,在此基础上提出了Sr2 MgSi2 O7∶Eu2+,Dy3+热劣化的陷阱能级受热破坏机理。","authors":[{"authorName":"齐同刚","id":"20c46dcc-cfc2-4985-a998-955e0043a5af","originalAuthorName":"齐同刚"},{"authorName":"张占辉","id":"62fad5d4-d9ff-4c14-895e-3c7b7ae82201","originalAuthorName":"张占辉"},{"authorName":"关豆豆","id":"18e75996-88c0-431b-8b37-20804536db76","originalAuthorName":"关豆豆"},{"authorName":"彭伟康","id":"7929005e-859c-47ba-8313-949df00b88d6","originalAuthorName":"彭伟康"},{"authorName":"黄志良","id":"050f1ac4-4d53-4dae-ae5a-b3eaf1ff0cf6","originalAuthorName":"黄志良"}],"doi":"10.3969/j.issn.1001-9731.2016.增刊(Ⅱ).009","fpage":"53","id":"8ed4fa8b-c166-433e-a40f-f3cb08372210","issue":"z2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e08578e3-6423-4f94-bd65-83ac0c04a67b","keyword":"Sr2MgSi2O7∶Eu2+,Dy3+","originalKeyword":"Sr2MgSi2O7∶Eu2+,Dy3+"},{"id":"3938b7b2-92c1-4f85-9d4d-3759a6df8134","keyword":"长余辉发光材料","originalKeyword":"长余辉发光材料"},{"id":"fff390ca-aaeb-4413-be15-d97ff9ca6c5e","keyword":"热处理","originalKeyword":"热处理"},{"id":"2d016668-ae42-4b03-8297-0f5c6945e925","keyword":"热劣化机理","originalKeyword":"热劣化机理"}],"language":"zh","publisherId":"gncl2016z2009","title":"Sr2 MgSi2 O 7∶Eu2+,Dy3+长余辉发光材料的热劣化机理研究?","volume":"47","year":"2016"},{"abstractinfo":"模拟高炉块状带气流和温度条件,研究了粒度、熄焦方式和焦炭类型对焦炭劣化影响,以及高炉上部碱金属K2CO3和Na2CO3催化焦炭与CO2的反应机理.结果表明:小粒度焦炭和湿熄焦炭失碳率较高,产生的粉末量多;捣固焦炭在反应开始时劣化程度低于顶装焦炭,随着反应时间增加,劣化程度高于顶装焦炭;碱金属会与焦炭中的灰分形成催化复合物,导致焦炭与CO2反应的起始温度降低,破坏焦炭的微晶结构,失碳率增加,粉化加重;K2CO3的催化作用高于Na2CO3的催化作用.","authors":[{"authorName":"吕青青","id":"ac62aa7a-df98-4c97-aa3b-85b08132c22f","originalAuthorName":"吕青青"},{"authorName":"杜屏","id":"c34d7de0-3eb7-4b54-b89b-7ea0940d1aa6","originalAuthorName":"杜屏"},{"authorName":"周俊兰","id":"9bf57fcc-983d-4637-a4e1-7fac07d356b5","originalAuthorName":"周俊兰"}],"doi":"10.13228/j.boyuan.issn0449-749x.20150114","fpage":"13","id":"3b1db71d-c650-4984-ba94-e8e917cedec6","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"35989979-46ee-4534-b44c-8ec8fc50ab57","keyword":"高炉","originalKeyword":"高炉"},{"id":"b5423fe0-9991-464e-979b-62c9b8f2bc16","keyword":"块状带","originalKeyword":"块状带"},{"id":"e853c6fb-0851-416f-8a10-1b070e896bf0","keyword":"焦炭","originalKeyword":"焦炭"},{"id":"be8dcb1c-0af8-417d-ae88-563ae68cde94","keyword":"碱金属","originalKeyword":"碱金属"},{"id":"baf1bcbb-d1c6-492b-8268-8a7765b5ae8b","keyword":"催化反应","originalKeyword":"催化反应"}],"language":"zh","publisherId":"gt201601003","title":"高炉块状带焦炭劣化机理","volume":"51","year":"2016"},{"abstractinfo":"研究了Ba1-xMgAl10:xEu2+(BAM)在空气中热处理后的荧光衰减特性和机制.结果表明:经600℃热处理1~5 h以及分别经700,800和900℃热处理1 h后,蓝光和绿光发射强度都减弱,红光发射不明显.经1000℃热处理1h后,在蓝光和绿光发射强度减弱的同时,出现了明显的红光发射.因此,600~900℃热处理时,BAM的热劣化是由Eu2+迁移和聚集所致.由于O2在荧光粉表面形成吸附氧(O),荧光粉β-Al2O3结构的镜面层中的Eu2+向吸附氧表面迁移并聚集,使Eu2+的晶体场改变以及Eu2+之间的能量传递加剧导致无辐射跃迁几率增加,蓝光发射减弱;类似地,尖晶石胞中Eu2+迁移到镜面层,导致绿光发射减弱.1000℃下热处理时,Eu2+被临近的O氧化,出现Eu3+红光特征发射,加剧了材料的劣化.","authors":[{"authorName":"刘荣辉","id":"92292f53-3d5e-489d-b586-99298eb6b5d4","originalAuthorName":"刘荣辉"},{"authorName":"庄卫东","id":"07a7528a-9037-4dc8-9d1f-929e8f3ca62d","originalAuthorName":"庄卫东"},{"authorName":"黄小卫","id":"c9ebe806-cc56-452d-b272-ae64e6e31ab4","originalAuthorName":"黄小卫"},{"authorName":"胡运生","id":"4074d902-487a-48ce-9cdf-b35b3825abfa","originalAuthorName":"胡运生"},{"authorName":"何华强","id":"667f1df9-d9a4-4c9f-b045-25ee146074a8","originalAuthorName":"何华强"}],"doi":"","fpage":"178","id":"41bdd257-8a21-4ac3-946a-7b92eee7046b","issue":"2","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"b8f65f55-a374-481b-afa3-61987d7164aa","keyword":"Ba1-xMgAl10O7","originalKeyword":"Ba1-xMgAl10O7"},{"id":"8f953272-06ff-4a98-bdaa-90f27ebd53d7","keyword":"xEu2+","originalKeyword":"xEu2+"},{"id":"47582cf5-6856-4cbc-8734-42db679cdbe3","keyword":"蓝色荧光粉","originalKeyword":"蓝色荧光粉"},{"id":"f4496dac-c034-41a8-8542-2f160c726a27","keyword":"热劣化","originalKeyword":"热劣化"},{"id":"ddff2bb1-b456-4987-83de-66d5cdf2b834","keyword":"机制","originalKeyword":"机制"},{"id":"515849e0-557e-4884-ba9a-b187507907a1","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"zgxtxb200902003","title":"铝酸盐蓝色荧光粉的热劣化及机制研究","volume":"27","year":"2009"},{"abstractinfo":"通过对比普通混凝土、普通喷射混凝土和钢纤维喷射混凝土在(干湿循环+盐湖卤水侵蚀)共同作用下的外观形貌、抗压强度、物相组成和微观结构,研究了喷射混凝土的劣化及其机理.结果表明:(干湿循环+盐湖卤水侵蚀)150次时,普通混凝土外观形貌破损严重,喷射混凝土外观形貌较完整;普通混凝土抗压强度<普通喷射混凝土<钢纤维喷射混凝土;钢纤维喷射混凝土表层微观结构较为致密且存在CH,侵蚀产物石膏在侵蚀后期发生了二次反应;其劣化侵蚀机理包括NaCl、MgCl2、Na2SO4和MgSO4的物理结晶侵蚀及碳酸盐、硫酸盐和镁盐的化学侵蚀,但未发现氯盐的化学侵蚀产物,而喷射混凝土中还发生碳硫硅钙石型硫酸盐侵蚀.","authors":[{"authorName":"袁斌","id":"d84f08f4-1d3a-4725-84d6-1883f1977b6c","originalAuthorName":"袁斌"},{"authorName":"牛荻涛","id":"24328a8d-e027-4f51-b912-b006eaaacb9c","originalAuthorName":"牛荻涛"},{"authorName":"蒿洋","id":"4628f013-8007-4b1e-b2d2-53750292ac30","originalAuthorName":"蒿洋"},{"authorName":"王家滨","id":"47109ff0-2f22-404f-bebc-14a5565e8e5d","originalAuthorName":"王家滨"}],"doi":"","fpage":"607","id":"b0144a2a-af48-420c-bf0d-9319f073af58","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"b743ccba-1f4a-4b90-b690-8ed6ca735be6","keyword":"喷射混凝土","originalKeyword":"喷射混凝土"},{"id":"f4274d86-6dc5-4e1b-8861-1fcc24cae6ea","keyword":"干湿循环","originalKeyword":"干湿循环"},{"id":"944ac379-cd1d-4ade-9cd4-9587ed358052","keyword":"盐湖卤水侵蚀","originalKeyword":"盐湖卤水侵蚀"},{"id":"0bd45e15-635e-462a-85f1-6aad9c3086de","keyword":"共同作用","originalKeyword":"共同作用"},{"id":"b40eb37f-b86f-4682-9b57-6811dacffefe","keyword":"劣化","originalKeyword":"劣化"},{"id":"4c637fed-a572-4c38-bb27-d50416a59af7","keyword":"侵蚀机理","originalKeyword":"侵蚀机理"}],"language":"zh","publisherId":"gsytb201702034","title":"干湿循环与盐湖卤水侵蚀共同作用下喷射混凝土的劣化及其机理","volume":"36","year":"2017"},{"abstractinfo":"通过与H3BO3作对比,考察了新型焦炭劣化抑制剂A、B、ZP对焦炭热性能的影响,ZP新型焦炭劣化抑制剂改善焦炭热性能的作用比其它3种劣化抑制剂更显著。为便于工业化应用,研究了浸泡和喷洒方式对ZP作用的影响,结果表明:浸泡方式更有利于ZP作用的发挥。为进一步认识ZP作用机理,用扫描电子显微镜观察了喷洒ZP对热反应前和后焦炭形貌的影响,结果表明:喷洒ZP后焦炭表面气孔直径和深度都减小,喷洒ZP有助于减少CO2对焦炭的腐蚀作用。","authors":[{"authorName":"王留成","id":"b8752611-27bc-4b9a-b549-978649a01d10","originalAuthorName":"王留成"},{"authorName":"郑士朋","id":"9da8b93f-f556-4801-b321-ec040bb64677","originalAuthorName":"郑士朋"},{"authorName":"王建设","id":"7c2c950a-a2a7-4424-8fe3-3f15b41d4c2f","originalAuthorName":"王建设"},{"authorName":"宋成盈","id":"1bb6a913-29c1-48f9-8107-33bc0b785e3d","originalAuthorName":"宋成盈"},{"authorName":"赵建宏","id":"94a51a11-1e15-4ea4-957b-cd1fdb565994","originalAuthorName":"赵建宏"}],"categoryName":"|","doi":"","fpage":"16","id":"30606a05-18d6-494a-a38a-efaafa94226d","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"ef9b0809-3e37-484f-bc51-a8e7e41ef138","keyword":"焦炭;劣化抑制剂;CRI;CSR","originalKeyword":"焦炭;劣化抑制剂;CRI;CSR"}],"language":"zh","publisherId":"0449-749X_2009_5_20","title":"焦炭劣化抑制剂对焦炭热性能的改善研究","volume":"44","year":"2009"},{"abstractinfo":"通过与H3BO3作对比,考察了新型焦炭劣化抑制剂A、B、ZP对焦炭热性能的影响,ZP新型焦炭劣化抑制剂改善焦炭热性能的作用比其它3种劣化抑制剂更显著.为便于工业化应用,研究了浸泡和喷洒方式对ZP作用的影响,结果表明:浸泡方式更有利于ZP作用的发挥.为进一步认识ZP作用机理,用扫描电子显微镜观察了喷洒ZP对热反应前和后焦炭形貌的影响,结果表明:喷洒ZP后焦炭表面气孔直径和深度都减小,喷洒ZP有助于减少C0z对焦炭的腐蚀作用.","authors":[{"authorName":"王留成","id":"4357cf9f-898b-4d35-91cd-9080ecf229b3","originalAuthorName":"王留成"},{"authorName":"郑士朋","id":"e3c2467e-e7bf-4ff4-91ed-29849cce2e74","originalAuthorName":"郑士朋"},{"authorName":"王建设","id":"72216cfd-13c6-422f-b39d-08d41080c5ac","originalAuthorName":"王建设"},{"authorName":"宋成盈","id":"9ee169bc-249f-4ec5-8089-932329d5130b","originalAuthorName":"宋成盈"},{"authorName":"赵建宏","id":"0934343f-dccf-4342-ba21-06d82a675ab4","originalAuthorName":"赵建宏"}],"doi":"","fpage":"16","id":"582921f6-08ef-4344-845d-98480e196cb8","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6dabcfde-2ec1-4a87-8305-88ba87d6143c","keyword":"焦炭","originalKeyword":"焦炭"},{"id":"8b4b8e90-936e-4763-8b61-550827c440c0","keyword":"劣化抑制剂","originalKeyword":"劣化抑制剂"},{"id":"a7713e6f-53ca-4ceb-84a5-005410089112","keyword":"CRI","originalKeyword":"CRI"},{"id":"149dcfcd-feb1-419c-b89c-9140afc0be08","keyword":"CSR","originalKeyword":"CSR"}],"language":"zh","publisherId":"gt200905004","title":"焦炭劣化抑制剂对焦炭热性能的改善研究","volume":"44","year":"2009"},{"abstractinfo":"研究了3种湿热方式作用下ZnO压敏电阻器的性能劣化规律,以及环氧粉末的固化条件的影响.分析与讨论了湿热联合作用下ZnO压敏电阻器受潮机理,以及温度和压力在湿热劣化过程中的加速作用.","authors":[{"authorName":"李建英","id":"12acca91-c094-4ec1-a6cb-09372531a38e","originalAuthorName":"李建英"},{"authorName":"刘辅宜","id":"c30d0d5e-09b0-4703-a668-0f6f974c0091","originalAuthorName":"刘辅宜"},{"authorName":"李盛涛","id":"93388aab-1960-47e4-bf06-737e9c40cb3d","originalAuthorName":"李盛涛"}],"doi":"","fpage":"129","id":"5f8a1a99-8e28-47e3-9ee2-19bf8d46d330","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"4ced6f70-0256-4130-954b-64ea29024953","keyword":"Zno压敏电阻器","originalKeyword":"Zno压敏电阻器"},{"id":"17a3b7e7-7300-4e1a-a82c-2e594fffd228","keyword":"环氧粉未","originalKeyword":"环氧粉未"},{"id":"af624b93-4d18-4c6c-9808-325e2d719205","keyword":"湿热劣化","originalKeyword":"湿热劣化"}],"language":"zh","publisherId":"gfzclkxygc199902037","title":"环氧粉末包封的ZnO压敏电阻器的湿热劣化规律研究","volume":"","year":"1999"},{"abstractinfo":"采用干湿循环和长期浸泡两种制度,模拟滨海化工园区酸雨环境,研究C25和C50混凝土在酸雨侵蚀条件下的损伤劣化规律.结果表明:混凝土的质量、抗压强度、抗氯离子扩散能力随着酸雨循环次数的增加,呈现先增大后减小的趋势;C50及C25混凝土均是质量先达到破坏标准,水胶比低的混凝土抗酸雨侵蚀能力强;干湿循环实验和长期浸泡这两种制度下酸雨对混凝土的侵蚀规律一致.","authors":[{"authorName":"姜健","id":"a163463d-1e01-4549-8737-f8d7c7b37f5d","originalAuthorName":"姜健"},{"authorName":"徐惠","id":"1ce6d6e9-18d7-4718-ac15-c51968f2500c","originalAuthorName":"徐惠"},{"authorName":"唐轶繁","id":"8692ed6c-1caa-4432-8ff8-56c247822431","originalAuthorName":"唐轶繁"}],"doi":"","fpage":"1407","id":"bb8fad53-6716-49a3-a6b7-b616ddecd963","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"0ebfe1a9-6d6a-49bb-925e-1ab5b0219287","keyword":"酸雨","originalKeyword":"酸雨"},{"id":"bdbca096-fcde-4b63-98c2-6488a9987709","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"097a4702-e8d0-4ec3-af8e-467e8bd87eee","keyword":"侵蚀","originalKeyword":"侵蚀"},{"id":"1f033e8f-67e1-4e2d-9527-80d0cafe1fef","keyword":"劣化机理","originalKeyword":"劣化机理"}],"language":"zh","publisherId":"gsytb201505042","title":"酸雨模拟液侵蚀混凝土的损伤劣化研究","volume":"34","year":"2015"},{"abstractinfo":"如何评估固体绝缘材料的耐电痕性,识别和选择合适的绝缘材料非常重要.丈中按照IEC 60112国际标准试验法对PVC进行电痕劣化试验,运用混沌方法对其电痕劣化试验的电流波形进行分析,计算其最大Lyapunov指数,作出吸引子相图,以期描述绝缘劣化的变化规律.试验结果表明,同一电压级别具有相似的吸引子,不同的电压级别吸引子不同.随着电痕劣化的发展,吸引子相图随之演变.电流波形的吸引子相图是表征电痕劣化进程的一种有效方法.","authors":[{"authorName":"杜伯学","id":"9709637e-867b-4eb8-8829-00b87fb64883","originalAuthorName":"杜伯学"},{"authorName":"董典帅","id":"4f5fe059-4a8e-409d-8196-dd630b489f70","originalAuthorName":"董典帅"},{"authorName":"郑晓磊","id":"a8a5ba24-277b-4147-84d3-8f5d783f4ad4","originalAuthorName":"郑晓磊"},{"authorName":"古亮","id":"8f7c5303-e3ae-4d42-af3a-33e543155df9","originalAuthorName":"古亮"}],"doi":"","fpage":"5","id":"c419b46a-e859-452a-baed-2374661b6453","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"49753730-0041-4708-bc3c-a222a3a116f6","keyword":"聚氯乙烯(PVC)","originalKeyword":"聚氯乙烯(PVC)"},{"id":"846fbb1d-9f7a-459a-ae4e-d59b3a87c55b","keyword":"绝缘评估","originalKeyword":"绝缘评估"},{"id":"57a69bcb-09d4-4639-9105-2dcc1adee8ae","keyword":"耐电痕性","originalKeyword":"耐电痕性"},{"id":"a3e73e19-4061-4c07-9dc1-ab9dcedd7b6f","keyword":"混沌理论","originalKeyword":"混沌理论"},{"id":"11cc55cb-6672-4094-b345-401b3bfcc4bb","keyword":"吸引子相图","originalKeyword":"吸引子相图"}],"language":"zh","publisherId":"gfzclkxygc200810002","title":"PVC绝缘试样漏电痕迹劣化的混沌方法分析","volume":"24","year":"2008"},{"abstractinfo":"为研究环氧涂层在浸泡条件下的失效机理,结合丝束电极(WBE)和电化学阻抗谱(EIS)技术研究了环氧涂层浸泡在天然海水中的劣化过程,同时分析了与涂层局部缺陷区相对应的电流密度分布和阻抗谱特征的差异.结果表明:丝束电极表面电流密度分布与EIS响应特征能够良好对应,两者结合使用可以实现对表面任意局部阳极和阴极区腐蚀过程的研究;涂层丝束电极的总阻抗响应主要与涂层局部缺陷最为严重处的电极过程特征相对应,而不能反映出其他区域的涂层劣化和涂层下基体的电化学过程信息;涂层下丝束电极出现了极性转换现象,但发生转换的原因各不相同.","authors":[{"authorName":"刘杰","id":"72307a43-88c2-4d61-ae5b-6d57bd23d9fe","originalAuthorName":"刘杰"},{"authorName":"王伟","id":"11bde049-c66d-4aae-a3a0-83831bb64553","originalAuthorName":"王伟"},{"authorName":"王佳","id":"08aa48de-4398-4e82-934c-f166f5202125","originalAuthorName":"王佳"}],"doi":"","fpage":"33","id":"509869e5-efe3-4996-8869-d0ab57479582","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"b9f09844-3c21-4382-a4dd-c8a66969851a","keyword":"电化学阻抗谱","originalKeyword":"电化学阻抗谱"},{"id":"f2bc6ae9-18ed-4218-9783-b20f6dd8a067","keyword":"丝束电极","originalKeyword":"丝束电极"},{"id":"7d40ab05-3b51-4e13-9e1d-b475be70a306","keyword":"环氧涂层","originalKeyword":"环氧涂层"},{"id":"a039b392-d189-4f70-9e7e-53f288defe8c","keyword":"电流密度分布","originalKeyword":"电流密度分布"},{"id":"ba2fb014-0ffe-4e8c-9984-12c6b14903ce","keyword":"极性转换","originalKeyword":"极性转换"}],"language":"zh","publisherId":"clkxygy201305006","title":"结合EIS和WBE技术研究环氧涂层劣化","volume":"21","year":"2013"}],"totalpage":6175,"totalrecord":61748}