{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过极化曲线和电化学阻抗谱研究了交流杂散电流、温度、pH和氯离子含量对天津机场供油管线钢X52钢腐蚀行为的影响.结果表明:在交流干扰情况下X52钢的腐蚀速率要比没有干扰情况下更快,且随着干扰电压的增大而增大;在15 V交流干扰电压条件下,改变温度、pH和氯离子含量都会使X52钢的腐蚀速率发生变化,且腐蚀产物不同;此供油管线的最佳保护电位应该在-987~-1 006 mV(SCE),且腐蚀控制形式都偏向于阳极控制.","authors":[{"authorName":"丁清苗","id":"c1529022-cb2f-4553-882d-ff28d0d4dc67","originalAuthorName":"丁清苗"},{"authorName":"范玥铭","id":"76c408cb-5481-475a-b27b-8af7edaadd8c","originalAuthorName":"范玥铭"},{"authorName":"沈陶","id":"4fc5b548-6a88-4410-a7f9-94f366f754dd","originalAuthorName":"沈陶"},{"authorName":"张亮亮","id":"0cc8e3c0-8f75-45f9-894f-cd5a09364ec5","originalAuthorName":"张亮亮"},{"authorName":"张璇","id":"d3be25ef-9941-4ee1-80b8-40a85ec68783","originalAuthorName":"张璇"}],"doi":"10.11973/fsyfh-201604016","fpage":"345","id":"3d09c8c0-6ef6-4db0-98d6-72d0abeb38ff","issue":"4","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"21ac4ac0-b502-4fdf-9b1f-a1bb5b600b2c","keyword":"交流杂散电流","originalKeyword":"交流杂散电流"},{"id":"0c6e69d4-8801-424f-bc65-94df3a0c4815","keyword":"温度","originalKeyword":"温度"},{"id":"3065c111-9155-4bea-8d49-0772573c86a9","keyword":"pH","originalKeyword":"pH"},{"id":"286a79ac-cf8a-4e43-bbc3-40799ed53f71","keyword":"氯离子浓度","originalKeyword":"氯离子浓度"},{"id":"c46185d2-83d3-40af-8a6b-27fa896e8b2f","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"b78225f6-42e0-4dce-89ee-bccc9cab1feb","keyword":"最佳保护电位","originalKeyword":"最佳保护电位"},{"id":"ff756ba4-030a-4ba7-84c8-eabd033d2fa0","keyword":"阳极控制","originalKeyword":"阳极控制"}],"language":"zh","publisherId":"fsyfh201604016","title":"机场供油管线X52钢腐蚀的影响因素","volume":"37","year":"2016"},{"abstractinfo":"采用电化学方法研究了氯离子浓度、温度、阳极极化电流及三者间相互协同作用对99.9999%高纯锌参比电极电位稳定性的影响.结果表明,常温(25℃)下氯离子浓度越高,电极的稳定电位越负;在海水中,偏离25℃,温度升高或降低时,电极电位都会负移,当温度达到50℃时,锌上沉积的腐蚀产物结构改变使锌的电极电位正移;海水温度在0~25℃,阳极极化电流<5μA/cm2,高纯锌具有良好的电流负载能力.","authors":[{"authorName":"王增娣","id":"3b9e5192-c12e-4dc2-8a9d-8c2389be4009","originalAuthorName":"王增娣"},{"authorName":"闫永贵","id":"4646ee69-e65f-42a8-b5a2-efb57abf7535","originalAuthorName":"闫永贵"},{"authorName":"马力","id":"21fb1e72-fce8-4954-8f6e-3f644541a6b7","originalAuthorName":"马力"},{"authorName":"钱建华","id":"2892e670-efbd-462f-aae5-df1eefbcff33","originalAuthorName":"钱建华"},{"authorName":"陈光章","id":"ee21734e-7910-4809-b735-596f76e0b225","originalAuthorName":"陈光章"},{"authorName":"李庆芬","id":"b6f3f15a-e38e-46a0-a7cf-f2f9fd44c79b","originalAuthorName":"李庆芬"}],"doi":"10.3969/j.issn.1005-748X.2006.09.005","fpage":"450","id":"411fd4c4-4849-4b4f-bf68-e893370ca671","issue":"9","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"d29b9d24-283c-4dea-8427-8a3665e15a3e","keyword":"高纯锌","originalKeyword":"高纯锌"},{"id":"02f5dee1-0836-45d4-87f8-ee4bdfc871d4","keyword":"氯离子浓度","originalKeyword":"氯离子浓度"},{"id":"009a669f-72fa-4799-bc3a-0828dc85c478","keyword":"温度","originalKeyword":"温度"},{"id":"bf9cb05f-4112-40a9-b22d-5227d71bad34","keyword":"阳极极化电流","originalKeyword":"阳极极化电流"}],"language":"zh","publisherId":"fsyfh200609005","title":"高纯锌参比电极电位稳定性研究","volume":"27","year":"2006"},{"abstractinfo":"对带氧化皮钢筋和带锈钢筋以及裸表面钢筋进行了电化学试验,研究不同表面的钢筋在模拟混凝土溶液[饱和Ca(OH)2溶液]中的腐蚀行为及钝化规律.结果表明,对于稳定后的自腐蚀电位,裸表面钢筋最高,带氧化皮表面钢筋次之,带锈表面最低;随着pH的降低,三种表面钢筋的钝化性能都随之降低,带氧化皮钢筋和裸表面钢筋的钝化能力明显高于带锈钢筋,测定了临界钝化pH,裸表面钢筋的临界钝化pH为11.2,带氧化皮钢筋的为11.0,而带锈钢筋的临界钝化pH为12.4,说明在pH降低的情况下,当带锈钢筋开始发生腐蚀时,裸表面钢筋和带氧化皮钢筋依旧可以保持钝化;随着氯离子浓度升高,带氧化皮表面钢筋和裸表面钢筋钝化性能都随之降低,测定的临界钝化浓度也大致相同,为0.03 mol/L,极小量氯离子浓度即可导致带锈钢筋去钝化,临界值为0.01 mol/L.","authors":[{"authorName":"陈杉檬","id":"0e7179c5-e603-41c9-9159-07c7503c826f","originalAuthorName":"陈杉檬"},{"authorName":"曹备","id":"3994f80d-dd2b-479c-99fd-44ddf7f4f7e1","originalAuthorName":"曹备"},{"authorName":"马珂","id":"06a58802-a7c5-4a41-b33f-3c0fbfcd5993","originalAuthorName":"马珂"}],"doi":"","fpage":"808","id":"ae713ab0-3f47-44ce-82aa-7a28f95da509","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"340a1ad4-83ea-4e7b-8c5a-ff7ced7ad667","keyword":"钢筋","originalKeyword":"钢筋"},{"id":"62ac393b-0f8c-4e2f-9bfa-5a432375a9d2","keyword":"电化学试验","originalKeyword":"电化学试验"},{"id":"929d16f8-d30c-4eab-9eed-d4afc7df8d94","keyword":"钝化","originalKeyword":"钝化"},{"id":"a144c704-58db-4815-aebb-907c54ed4c50","keyword":"pH","originalKeyword":"pH"},{"id":"829d47ef-c1e9-43f6-936f-f720a0d49a41","keyword":"氯离子浓度","originalKeyword":"氯离子浓度"}],"language":"zh","publisherId":"fsyfh201408011","title":"pH及Cl-对不同表面钢筋钝化行为的影响","volume":"35","year":"2014"},{"abstractinfo":"主要研究了氯盐环境中掺粉煤灰和矿粉的砂浆性能.通过测试在氯化钠和氯化钙溶液浸泡之后的水泥砂浆的自由氯离子浓度和总氯离子浓度,研究了矿物掺合料对氯离子结合能力的影响,结论表明随着矿物掺合料掺量的增加,砂浆的氯离子结合能力也会提高.基于RCM法检测了砂浆的氯离子扩散系数,结果表明粉煤灰和矿粉均可以提高混凝土的抗氯离子渗透性,并且矿粉对抗氯离子渗透性的改善作用更显著.基于氯盐结晶、氢氧化钙溶出、Friedel's盐角度,分析砂浆孔隙率变化的原因,结论表明氯盐会导致砂浆孔隙率增加,而矿物掺合料则可以减小由氯盐引起的孔隙率增加的作用.","authors":[{"authorName":"张士萍","id":"212ab080-0097-4002-b63a-0d0aee07cbb4","originalAuthorName":"张士萍"},{"authorName":"沙学成","id":"dd8f78a5-250e-416d-8e0d-f9591511d4a2","originalAuthorName":"沙学成"},{"authorName":"宗兰","id":"fbd4e514-c006-4dec-818a-2a16e0672b64","originalAuthorName":"宗兰"}],"doi":"","fpage":"893","id":"ddcdfae8-2d18-47da-bc2f-f10fd574566f","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"05335169-897c-4d72-9466-c0838e3c5fd2","keyword":"氯离子浓度","originalKeyword":"氯离子浓度"},{"id":"5bc6a7ca-1447-4401-a926-893d4fb7a138","keyword":"氯离子扩散","originalKeyword":"氯离子扩散"},{"id":"38196a2d-2e8d-44df-bdc6-70ad2d04281d","keyword":"孔隙率","originalKeyword":"孔隙率"}],"language":"zh","publisherId":"gsytb201703023","title":"氯盐环境下粉煤灰及矿粉对砂浆性能的影响","volume":"36","year":"2017"},{"abstractinfo":"海洋环境下,钢筋混凝土结构寿命预测的准确性及防护措施的及时采用对减少因氯离子侵蚀而造成的经济损失具有重要意义,而钢筋混凝土结构的耐久性设计、检测鉴定及修复策略制定中的一个重要参数就是临界氯离子浓度.本文主要针对临界氯离子浓度研究方法中一些关键性问题进行了总结分析,如临界氯离子浓度的表达形式、氯离子浓度的测定方法等,并指出各研究方法的优缺点,以便为今后的研究提供参考.","authors":[{"authorName":"刘诗群","id":"f9c4c0c7-8506-45b1-9423-8ba028c46760","originalAuthorName":"刘诗群"},{"authorName":"孙丛涛","id":"d2c7b3b4-1910-4dd0-8fec-70b410188940","originalAuthorName":"孙丛涛"},{"authorName":"牛荻涛","id":"fcc491dd-b24c-45dd-a2b5-0b15188d7e21","originalAuthorName":"牛荻涛"}],"doi":"","fpage":"83","id":"38aaebaf-94ed-4738-b9ba-5d8558d50e6c","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"43c817be-2584-4a92-8557-766959e85ab3","keyword":"临界氯离子浓度","originalKeyword":"临界氯离子浓度"},{"id":"58926051-0ed7-4770-8f6d-455019a738e0","keyword":"表达形式","originalKeyword":"表达形式"},{"id":"f34a675e-f0c5-4206-8663-92ddc931a783","keyword":"测定方法","originalKeyword":"测定方法"}],"language":"zh","publisherId":"gsytb201401017","title":"钢筋腐蚀临界氯离子浓度研究综述","volume":"33","year":"2014"},{"abstractinfo":"采用化学分析方法测定了掺加10% ~ 70%磨细矿渣的混凝土在青海盐湖卤水、3.5% NaCl+ 5% MgS04溶液和3.5% NaCl溶液等3种氯盐环境中不同暴露时间的自由氯离子浓度分布,研究了不同环境类型与氯盐浓度对矿渣混凝土表面氯离子浓度的影响.结果表明,矿渣混凝土的表面氯离子浓度随着氯盐浓度增大而增大;暴露环境的离子成分越复杂,混凝土表面氯离子浓度越大;矿渣混凝土的表面氯离子浓度随着暴露时间延长呈非线性函数关系增加.","authors":[{"authorName":"肖卫","id":"409d462f-dfcb-42ca-a617-b7ffe605e51a","originalAuthorName":"肖卫"},{"authorName":"余红发","id":"6758dda4-78e7-4176-ad63-3ffb091b39f0","originalAuthorName":"余红发"},{"authorName":"翁智财","id":"b9ec7280-5216-40b4-a9cd-568e339d0224","originalAuthorName":"翁智财"},{"authorName":"麻海舰","id":"87865af4-a7f0-4d9f-a901-35567204b1a9","originalAuthorName":"麻海舰"},{"authorName":"袁银峰","id":"837e2761-6d34-4dda-8bd7-2d8ae6cfae76","originalAuthorName":"袁银峰"},{"authorName":"达波","id":"f05501c4-8178-441a-a3d7-94597a0f0b4e","originalAuthorName":"达波"}],"doi":"","fpage":"1","id":"d3d4e6b6-94bc-40fe-b6e3-8c90791f7f52","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"f2e52691-868b-4ae1-9a2c-f17137859fd8","keyword":"矿渣混凝土","originalKeyword":"矿渣混凝土"},{"id":"13f3d35a-ff46-4849-86e7-29211db98a7d","keyword":"环境类型","originalKeyword":"环境类型"},{"id":"bf2e938e-1bb8-4d1f-8645-ea1705282716","keyword":"氯盐浓度","originalKeyword":"氯盐浓度"},{"id":"4336b6e4-3f5a-460d-b661-35c8d2860db3","keyword":"表面氯离子浓度","originalKeyword":"表面氯离子浓度"}],"language":"zh","publisherId":"gsytb201501001","title":"环境类型与氯盐浓度对矿渣混凝土表面氯离子浓度的影响","volume":"34","year":"2015"},{"abstractinfo":"采用动电位扫描测量技术和扫描电镜测试了304L和316L不锈钢钢筋与Q235钢筋在模拟混凝土孔溶液中的临界氯离子浓度,并采用XPS分析了304L和316L不锈钢钢筋的钝化膜成分.结果表明,普通碳钢(Q235)、304L、316L不锈钢在pH=12.6的模拟混凝土孔隙液中的临界氯离子浓度分别约为0.06 mol/L、1.2mol/L、4.0 mol/L;相比304L不锈钢钢筋,316L不锈钢钢筋试样表面钝化膜中含有耐腐蚀性的Cr3+的氧化物量更高.","authors":[{"authorName":"陈龙","id":"6d6df386-6c07-4944-bfee-bb4bb443a025","originalAuthorName":"陈龙"},{"authorName":"瞿彧","id":"22efd73a-1a79-45c3-8e03-56b257cff600","originalAuthorName":"瞿彧"},{"authorName":"汤雁冰","id":"8e288237-db26-4be3-bd2a-f9cf84b36ee0","originalAuthorName":"汤雁冰"},{"authorName":"方翔","id":"d05a9c8d-29d2-452f-a8d9-c884a4fa79b7","originalAuthorName":"方翔"}],"doi":"","fpage":"446","id":"4095bf01-36ce-4800-9d24-f57f06e2a89c","issue":"5","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"742f7f5c-c349-4173-aeb3-8e90798c3ae4","keyword":"不锈钢钢筋","originalKeyword":"不锈钢钢筋"},{"id":"8c0400cd-b334-4751-a7ce-3279a59da2a2","keyword":"模拟混凝土液","originalKeyword":"模拟混凝土液"},{"id":"9e3b57b2-a3e2-4e3d-a56d-7f250e246003","keyword":"临界氯离子浓度","originalKeyword":"临界氯离子浓度"}],"language":"zh","publisherId":"fsyfh201405010","title":"不锈钢钢筋的临界氯离子浓度","volume":"35","year":"2014"},{"abstractinfo":"干湿交替下氯离子分布曲线中可能存在氯离子浓度峰。本文主要研究了不同水灰比对氯离子浓度峰的影响,以及适合这种氯离子分布曲线计算扩散参数的方法。实验结果显示,峰值氯离子浓度( Cmax )随水灰比呈双曲线关系增大,而浓度峰出现的位置与水灰比呈较好线性增长关系。此外,去掉氯离子增大阶段并以浓度峰出现的深度为零点拟合氯离子下降阶段的方法较为适合被应用于出现浓度峰的氯离子分布曲线中来获得扩散参数。","authors":[{"authorName":"常洪雷","id":"155a47cd-031e-4e96-9423-b6def50bcc5a","originalAuthorName":"常洪雷"},{"authorName":"穆松","id":"fc8acc3e-47cc-4c14-9f3d-b30d63e7622d","originalAuthorName":"穆松"},{"authorName":"刘玉静","id":"f618d116-c60d-4bbb-a768-ac6c154f8d04","originalAuthorName":"刘玉静"},{"authorName":"刘建忠","id":"daa6b52c-18da-488b-a6cd-cd0151bc9032","originalAuthorName":"刘建忠"}],"doi":"","fpage":"14","id":"20c75e4f-6586-4044-9c6a-cb58d59ea5b7","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"1942bc06-d8f2-42c7-afdd-e7d7ea62297a","keyword":"水泥净浆","originalKeyword":"水泥净浆"},{"id":"6712201e-089a-476f-8454-f2478d9f9809","keyword":"干湿交替","originalKeyword":"干湿交替"},{"id":"e3e5fb77-916f-4a77-8489-3845954bbdd2","keyword":"峰值氯离子浓度","originalKeyword":"峰值氯离子浓度"},{"id":"6289686a-8531-4303-a6ab-513f9cf25828","keyword":"氯离子扩散系数","originalKeyword":"氯离子扩散系数"},{"id":"a0830991-96ef-4c3b-ad2f-64dbc445ae30","keyword":"表面氯离子浓度","originalKeyword":"表面氯离子浓度"}],"language":"zh","publisherId":"gsytb201701003","title":"存在浓度峰的氯离子分布曲线及其扩散参数的计算方法","volume":"36","year":"2017"},{"abstractinfo":"在电镀锡板钝化后的清洗过程中,水中氯离子会对镀锡板产品产生一定的腐蚀.为明确不同浓度氯离子的腐蚀影响,采用单片湿热挂片试验、叠片交变湿热试验进行了研究,发现随着氯离子浓度的增加,对镀锡板的腐蚀愈加明显.当氯离子质量浓度降低到6~7mg/L时,对镀锡板的腐蚀影响轻微,可基本忽略.提出在实际生产中,尽量控制清洗水中的氯离子质量浓度在6mg/L以下,即可基本消除氯离子对电镀锡板的腐蚀影响.","authors":[{"authorName":"曹美霞","id":"2a6acce9-9cf2-446b-9613-921e2939dd87","originalAuthorName":"曹美霞"},{"authorName":"唐艳秋","id":"385e18c3-51ab-439d-ab2d-427a82fed54b","originalAuthorName":"唐艳秋"},{"authorName":"陆永亮","id":"5dc3487b-217d-48ee-8183-b305352fc709","originalAuthorName":"陆永亮"},{"authorName":"王磊","id":"1e35d623-11ad-403e-915c-930bc1bdb735","originalAuthorName":"王磊"}],"doi":"10.3969/j.issn.1001-3849.2015.11.006","fpage":"24","id":"57b77206-eef3-403d-9ce7-b7adb59e7b81","issue":"11","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"1deca784-20d8-4756-b613-66deec7d7675","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"01f314d0-7259-4a18-ba80-bbe9ab7c7d01","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"db0b6a4b-fd06-4bfc-a35a-2b6ee5930a56","keyword":"镀锡板","originalKeyword":"镀锡板"},{"id":"960a3c5d-206c-4f97-8726-b78d575f3c42","keyword":"清洗","originalKeyword":"清洗"}],"language":"zh","publisherId":"ddjs201511006","title":"清洗水中氯离子浓度对镀锡板的腐蚀影响","volume":"37","year":"2015"},{"abstractinfo":"氯离子是铜箔生产电解液中不可缺少的成分,对电解铜箔性能起着重要的作用,必须控制在一定的工艺范围内(一般为20~80 mg/L).若氯离子浓度过高时,靠电解消耗来降低其含量,则需要较长的时间,将严重影响生产质量.为此,介绍和对比了4种处理酸性光亮镀铜中氯离子浓度过高的方法及效果.","authors":[{"authorName":"张丰如","id":"e8815bcc-6895-4462-bd87-970b73c7dc5e","originalAuthorName":"张丰如"},{"authorName":"唐春保","id":"db809df8-e18c-4146-8727-56be20e3b25a","originalAuthorName":"唐春保"},{"authorName":"冯建华","id":"177eb224-fd3b-4b68-b08a-86fcd08ae54f","originalAuthorName":"冯建华"},{"authorName":"谢静静","id":"06a8bb3c-a100-4129-8888-b2c35e960f76","originalAuthorName":"谢静静"}],"doi":"","fpage":"59","id":"c4b7b5d0-49b1-41f7-b4d0-7fc083d0947d","issue":"12","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"0f060a0c-03ab-4b17-af8f-deb817090879","keyword":"电解铜箔","originalKeyword":"电解铜箔"},{"id":"02417719-0398-45c8-9307-835586a52106","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"3ba11de5-bff8-4410-9688-1f17f760c9ed","keyword":"除氯方法及效果","originalKeyword":"除氯方法及效果"}],"language":"zh","publisherId":"clbh201312018","title":"电解铜箔生产中降低氯离子浓度的4种方法及效果","volume":"46","year":"2013"}],"totalpage":3310,"totalrecord":33095}