{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用溶液浸涂法,添加聚乙烯醇作为中间转换物,在碳纤维表面制备了氮化硼涂层.采用 SEM、FT-IR、XPS、TGA等测试技术对涂层的成分、结构、形貌进行了表征.实验结果表明,纤维表面没有开裂剥落,涂层与碳纤维结合良好,涂层碳纤维热稳定性良好,B 和 N 的原子分数分别为15.69%和16.97%,h-BN涂层的纯度较高.","authors":[{"authorName":"韦永山","id":"cb37c321-4978-437d-83ed-04e82952d2b0","originalAuthorName":"韦永山"},{"authorName":"杜作娟","id":"615436a9-c207-4783-aec8-ca6b9e332d8a","originalAuthorName":"杜作娟"},{"authorName":"李想","id":"c086a20e-58de-4481-a7cc-8c1f3851f7ef","originalAuthorName":"李想"},{"authorName":"黄小忠","id":"366bc087-23c3-4203-93c9-1371b59032bc","originalAuthorName":"黄小忠"},{"authorName":"惠忆聪","id":"35ae71cc-619c-49f5-9427-bfdc00547a6f","originalAuthorName":"惠忆聪"},{"authorName":"梁艳梅","id":"2a4211c7-f519-4d69-8a4d-486d3ed487b1","originalAuthorName":"梁艳梅"},{"authorName":"程勇","id":"b08dce2d-9671-48a3-bdbb-38b7dd3b3457","originalAuthorName":"程勇"},{"authorName":"周珊","id":"9289787d-af2e-4469-8bd4-b7045ce86302","originalAuthorName":"周珊"},{"authorName":"杨泽波","id":"a3f746ad-0f50-4525-b34d-8de08b5e4a86","originalAuthorName":"杨泽波"},{"authorName":"王超英","id":"6a091102-34a8-42d1-87a1-265ff855397e","originalAuthorName":"王超英"},{"authorName":"陈辉","id":"744b771e-b4b6-4767-aec3-d46a2907495f","originalAuthorName":"陈辉"},{"authorName":"龙国宁","id":"0110e882-7661-4558-9186-5795bc4193c3","originalAuthorName":"龙国宁"}],"doi":"10.3969/j.issn.1001-9731.2014.增刊(Ⅰ).017","fpage":"76","id":"209359f1-5bde-4037-ae09-3776b029ef01","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d7fd6ba0-78f9-4a5d-b69e-60d1ab489cec","keyword":"浸涂法","originalKeyword":"浸涂法"},{"id":"7e383969-8523-4784-80e5-7187719539ed","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"685154a0-edad-46f8-ab16-b30f4b652cea","keyword":"h-BN涂层","originalKeyword":"h-BN涂层"},{"id":"f8afc8b6-ac90-493a-9c77-cec409163530","keyword":"碳纤维","originalKeyword":"碳纤维"}],"language":"zh","publisherId":"gncl2014z1017","title":"碳纤维表面BN涂层的制备和表征","volume":"","year":"2014"},{"abstractinfo":"建立了使用固相萃取-液相色谱-串联质谱(SPE-LC-MS/MS)同时检测食品包装材料中16种全氟烷基类化合物(PFAS)的方法。分别对样品前处理方法、质谱条件等进行了比较和优化,样品用甲醇超声提取,经Oasis WAX固相萃取小柱净化后,用Atlantis T3 C18色谱柱分离,以乙腈和5 mmol/L乙酸铵溶液为流动相进行梯度洗脱,多反应监测(MRM)负离子模式扫描,同位素内标法和外标法结合定量。16种PFAS在0.5~20.0 μg/L范围内线性关系良好,相关系数(r2)均大于0.99。加标回收率为68.6%~109.2%,RSD为2.5%~18.1%(n=6)。检出限为0.2~0.5 μg/kg,定量限为0.5~1.0 μg/kg。该方法简便、快速、准确,可用于食品包装材料样品中PFAS的检测。","authors":[{"authorName":"何建丽","id":"ddae258a-0896-4bc5-90c4-6cfd43620eb8","originalAuthorName":"何建丽"},{"authorName":"彭涛","id":"d96d1c2c-8877-4b87-847d-c0794d8b69bd","originalAuthorName":"彭涛"},{"authorName":"谢洁","id":"91fe592f-92bd-4f5e-b9d7-7e4760791176","originalAuthorName":"谢洁"},{"authorName":"胡雪艳","id":"4f219a4f-436c-45f4-827b-0514056831f4","originalAuthorName":"胡雪艳"},{"authorName":"常巧英","id":"8e4430b4-a72f-4241-8bac-1d9d71757441","originalAuthorName":"常巧英"},{"authorName":"陈辉","id":"e3c94c56-c041-4808-aaf5-d71802c82b7d","originalAuthorName":"陈辉"},{"authorName":"范春林","id":"b28224db-cc76-44c4-96c2-b7c83a4fc795","originalAuthorName":"范春林"},{"authorName":"李存","id":"109b37df-7a6d-4f8f-b6ba-addf90b69f39","originalAuthorName":"李存"}],"categoryName":"特别策划:出入境检验检疫系统专栏(2016)","doi":"10.3724/SP.J.1123.2016.01012","fpage":"708","id":"1c5b6d74-a495-4417-8fb7-e06028be2f40","issue":"7","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"2f39f599-e9aa-4a81-9dff-3513cfd5f786","keyword":"液相色谱-串联质谱","originalKeyword":"液相色谱-串联质谱"},{"id":"1c01e39b-a870-4cab-8475-bb06abfee06d","keyword":"固相萃取","originalKeyword":"固相萃取"},{"id":"2dd55046-8e3e-468d-930b-ad221d29defe","keyword":"全氟烷基类化合物","originalKeyword":"全氟烷基类化合物"},{"id":"9b3f5fa2-ed6c-4c7b-b18c-9a9691295577","keyword":"包装材料","originalKeyword":"包装材料"}],"language":"zh","publisherId":"sp-34-7-708","title":"固相萃取-液相色谱-串联质谱法测定食品包装材料中16种全氟烷基类化合物","volume":"34","year":"2016"},{"abstractinfo":"为提高酚醛树脂结合铝碳砖常温强度并降低其成本,用碱木素替代部分苯酚,以碱木素含量、催化剂量和缩聚反应时间为因素,以合成的碱木素改性酚醛树(LPF)作结合剂的铝碳砖烘干后的常温抗折强度为考核指标,通过正交试验设计分析各因素对合成LPF的影响程度依次为:碱木素含量>催化剂含量>缩聚反应时间.用逐次回归分析预测合成LPF的最佳工艺条件为:碱木素含量10%(质量分数)、催化剂含量2%(质量分数)、缩聚反应时间2.5h.该最佳工艺合成的LPF结合铝碳砖的常温抗折强度达18.2 MPa,比商业酚醛结合铝碳砖常温抗折强度(16.1 MPa)提高13%,其物理性能也较商业酚醛树脂结合铝碳砖优.","authors":[{"authorName":"王富成","id":"3cd70b56-6d45-4b1b-9bde-b35d6f99f68c","originalAuthorName":"王富成"},{"authorName":"赵雷","id":"29315a0f-2f15-4aaa-a4d8-3a64f9dae3a3","originalAuthorName":"赵雷"},{"authorName":"方伟","id":"c543e1f5-ea4f-402f-a6d6-f4e2e27a5eb3","originalAuthorName":"方伟"},{"authorName":"何漩","id":"71bbe24b-9d49-44e7-8fe0-b3e83ed18837","originalAuthorName":"何漩"},{"authorName":"梁峰","id":"bac52da1-65e6-4f86-ac5c-ec15baba93ee","originalAuthorName":"梁峰"},{"authorName":"陈辉","id":"a5e9a9c7-bdb0-4f65-b0be-43f8daa50e38","originalAuthorName":"陈辉"},{"authorName":"杜星","id":"2c724051-246f-4cd2-9c14-858060527b3a","originalAuthorName":"杜星"},{"authorName":"陈欢","id":"fb5fdfce-2dcb-48d8-ae11-8f93fb3ade13","originalAuthorName":"陈欢"}],"doi":"10.11896/j.issn.1005-023X.2015.08.020","fpage":"91","id":"7e1c8743-51c8-4acf-b51f-26dcabf3ccf6","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0683b0f3-15ee-4540-8980-cc28ed39df1f","keyword":"碱木素","originalKeyword":"碱木素"},{"id":"16954baa-0dea-4a69-b5f1-e54ec412cabc","keyword":"改性酚醛树脂","originalKeyword":"改性酚醛树脂"},{"id":"94d0c5a5-57ee-437f-977b-4d8802baf119","keyword":"铝碳耐火材料","originalKeyword":"铝碳耐火材料"},{"id":"153f704e-86e1-41fc-9c50-150cb14a2705","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"353c4625-a0e1-479f-a139-348187793b2e","keyword":"回归分析","originalKeyword":"回归分析"}],"language":"zh","publisherId":"cldb201508020","title":"碱木素改性酚醛树脂及其在铝碳耐火材料中的应用","volume":"29","year":"2015"},{"abstractinfo":"不加金属催化剂,以碱木素酚醛树脂( LPF)和硅粉作为原料在低温条件下合成SiC纳米线。利用SEM、TEM、XRD表征样品的形貌及显微结构,用热力学方法分析反应条件对SiC纳米线生长的影响。结果表明,SiC纳米线在1100℃左右开始生长,其由气-液-固生长机理控制,同时其生成温度比用商业酚醛树脂作为原料低。生成的SiC纳米线的直径为30~100 nm并沿晶面的[111]方向生长。碱木素酚醛树脂中的无机盐在热解炭化过程中原位形成熔盐并起着液相催化剂球滴的作用,促进SiC纳米线的生长,并提出合成SiC纳米线的生长机理模型。","authors":[{"authorName":"王富成","id":"bd344504-b4a0-4fac-9515-4cb3e02dde5e","originalAuthorName":"王富成"},{"authorName":"赵雷","id":"f285806f-1500-432c-a156-f8f09648c1a8","originalAuthorName":"赵雷"},{"authorName":"方伟","id":"4301afce-275f-49ae-a30e-352d02bfa263","originalAuthorName":"方伟"},{"authorName":"何漩","id":"279691e4-30ab-42c1-96b1-19db2962f15a","originalAuthorName":"何漩"},{"authorName":"梁峰","id":"4e6646a4-c8cb-4ffd-bef7-2ed7f226a584","originalAuthorName":"梁峰"},{"authorName":"陈辉","id":"72694deb-e58b-4531-9aea-95546014aac2","originalAuthorName":"陈辉"},{"authorName":"陈欢","id":"7187a102-2a4b-4da1-a99b-ad6c8ee67976","originalAuthorName":"陈欢"},{"authorName":"杜星","id":"ea1c6b65-9939-41b8-9bd2-14701a1e5d87","originalAuthorName":"杜星"}],"doi":"10.1016/S1872-5805(15)60187-1","fpage":"222","id":"80011ae3-680b-4975-9ff0-b88c4b22542f","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"24a73f45-beda-4a5d-aa44-fe050cc46e16","keyword":"SiC纳米线","originalKeyword":"SiC纳米线"},{"id":"3738d547-e388-40dd-aa7d-c6641c873d40","keyword":"生长机理","originalKeyword":"生长机理"},{"id":"be6e3ee4-d878-43a9-ac30-5c9ff18b4ac8","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"9b6c9edf-6d62-4ad4-9f32-9d735da249c4","keyword":"原位熔盐","originalKeyword":"原位熔盐"}],"language":"zh","publisherId":"xxtcl201503004","title":"热解炭中原位熔盐催化SiC纳米线的合成及表征","volume":"","year":"2015"},{"abstractinfo":"本文在用双坩埚提拉法生长近化学计量比LiNbO3晶体的过程中观察到了组分过冷的实验数据,同时根据Tiller-Chalmers稳定性判据公式半定量计算了近化学计量比LiNbO3晶体临界生长速率的理论值,得到一般电阻加热双坩埚提拉法生长近化学计量比LiNbO3晶体的临界生长速率为0.1mm/h数量级.通过临界生长速率解释了一系列晶体生长的实验结果.提出了一些工艺措施来避免组分过冷,根据这些工艺获得了无包裹体的近化学计量比LiNbO3晶体.","authors":[{"authorName":"郑燕青","id":"19fce8b7-6a04-40f4-86e0-8c04885eae4c","originalAuthorName":"郑燕青"},{"authorName":"施尔畏","id":"9cbd3e80-548a-46d7-9c7c-cdb828579002","originalAuthorName":"施尔畏"},{"authorName":"王绍华","id":"87af0056-f49b-4406-8b27-cd19d781cbda","originalAuthorName":"王绍华"},{"authorName":"陈辉","id":"ad24131d-257c-4eaa-9fb4-28cf567b05c1","originalAuthorName":"陈辉"},{"authorName":"卢网平","id":"5bc79294-53fe-4b7a-8999-815d1a1eeb76","originalAuthorName":"卢网平"},{"authorName":"孔海宽","id":"10e77c85-ffaa-4bbb-8cfe-6b9735db384c","originalAuthorName":"孔海宽"},{"authorName":"陈建军","id":"98b5177d-dae7-44f6-8c7b-585cb8001cce","originalAuthorName":"陈建军"},{"authorName":"路治平","id":"cf5cf1e4-6e60-4ac3-aae6-68aaf6f2f155","originalAuthorName":"路治平"}],"doi":"10.3969/j.issn.1000-985X.2005.04.001","fpage":"571","id":"ed9acd53-40d3-40cd-8f43-96ee9f3d6998","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"c880f0d4-cb6b-498c-a6bf-e8d3f8bb9886","keyword":"双坩埚提拉法","originalKeyword":"双坩埚提拉法"},{"id":"1714ce4a-b242-45be-918b-8c1b042ee323","keyword":"近化学计量比","originalKeyword":"近化学计量比"},{"id":"be00db81-c74e-48f6-a177-0d23101ea820","keyword":"临界生长速率","originalKeyword":"临界生长速率"},{"id":"ccbf1ee9-75ea-45b0-aee6-7b04f2740f4d","keyword":"组分过冷","originalKeyword":"组分过冷"}],"language":"zh","publisherId":"rgjtxb98200504001","title":"近化学计量比铌酸锂晶体组分过冷与临界生长速率研究","volume":"34","year":"2005"},{"abstractinfo":"建立了使用固相萃取-液相色谱-串联质谱( SPE-LC-MS/MS)同时检测食品包装材料中16种全氟烷基类化合物( PFAS)的方法。分别对样品前处理方法、质谱条件等进行了比较和优化,样品用甲醇超声提取,经 Oasis WAX固相萃取小柱净化后,用 Atlantis T3 C18色谱柱分离,以乙腈和5 mmol/L乙酸铵溶液为流动相进行梯度洗脱,多反应监测( MRM)负离子模式扫描,同位素内标法和外标法结合定量。16种 PFAS 在0.5~20.0μg/L 范围内线性关系良好,相关系数( r2)均大于0.99。加标回收率为68.6%~109.2%,RSD为2.5%~18.1%( n=6)。检出限为0.2~0.5μg/kg,定量限为0.5~1.0μg/kg。该方法简便、快速、准确,可用于食品包装材料样品中 PFAS的检测。","authors":[{"authorName":"何建丽","id":"91309bb9-d123-48a2-87fd-abf475083f9b","originalAuthorName":"何建丽"},{"authorName":"彭涛","id":"75a84b6f-5894-4e67-b227-38796474a30d","originalAuthorName":"彭涛"},{"authorName":"谢洁","id":"44b8dfb7-396f-41dd-a18e-ff17affc3bc7","originalAuthorName":"谢洁"},{"authorName":"胡雪艳","id":"0e7fb1a3-fb04-4044-8bff-5eefcb4f0e6d","originalAuthorName":"胡雪艳"},{"authorName":"常巧英","id":"b1394c47-72ba-41bf-91f8-e460905bcd43","originalAuthorName":"常巧英"},{"authorName":"陈辉","id":"9e99ad04-0daa-41a8-8712-2998ff044a2c","originalAuthorName":"陈辉"},{"authorName":"范春林","id":"b1ef1087-b3ba-4b26-9cf3-a6ca7cf4912a","originalAuthorName":"范春林"},{"authorName":"李存","id":"39ce3488-cc80-4063-b66b-e237c597b3f3","originalAuthorName":"李存"}],"doi":"10.3724/SP.J.1123.2016.01012","fpage":"708","id":"723bff42-fdbe-4cb8-9ad3-4a737d3104e7","issue":"7","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"b3dd28bc-fa3c-4cb1-aafd-cabd965b89af","keyword":"液相色谱-串联质谱","originalKeyword":"液相色谱-串联质谱"},{"id":"e8a54656-3136-44ba-b45d-939b9161f295","keyword":"固相萃取","originalKeyword":"固相萃取"},{"id":"15d613b8-ae6b-46a9-a83d-faf557431cdc","keyword":"全氟烷基类化合物","originalKeyword":"全氟烷基类化合物"},{"id":"208cf649-ff25-46f8-9e8b-cd311e5c8179","keyword":"包装材料","originalKeyword":"包装材料"}],"language":"zh","publisherId":"sp201607012","title":"固相萃取-液相色谱-串联质谱法测定食品包装材料中16种全氟烷基类化合物","volume":"34","year":"2016"},{"abstractinfo":"以木质素磺酸钙为原料,部分替代苯酚,合成具有良好水溶性的木质素改性酚醛树脂( LPF),并在其合成过程中将催化剂前驱体六水硝酸镍(NNH)加入到LPF体系中制备出硝酸镍复合木质素改性酚醛树脂(NLPF),经200°C×24 h固化后,于还原气氛下经800°C×3 h、1000°C×3 h、1200°C×3 h炭化处理,制得NLPF热解炭。探讨催化剂Ni在NLPF复合体系中的分散性,采用X射线衍射仪、激光拉曼光谱仪、场发射扫描电子显微镜、高分辨透射电子显微镜分析NLPF热解炭的晶体结构及显微结构。结果表明,催化剂Ni均匀分散在NLPF复合体系中;NLPF热解过程中NNH被还原成单质Ni,其催化作用使热解炭中生成了结晶程度高的直线型碳纳米管,且呈网状相互交织,均匀的排布在热解炭气孔中;随着NNH添加量的增加,NLPF热解炭的石墨化程度提高,碳纳米管的生成量和直径增加;升高炭化温度同样可以增加碳纳米管的生成量,并使其长度增长。","authors":[{"authorName":"方伟","id":"e9edaf3a-83bc-434e-8472-f040c5b636e1","originalAuthorName":"方伟"},{"authorName":"赵雷","id":"e4841cfe-f92b-42d1-8cc5-fd24bd292bee","originalAuthorName":"赵雷"},{"authorName":"梁峰","id":"b873d97d-83b5-4ef1-b4b8-d9494b2337ee","originalAuthorName":"梁峰"},{"authorName":"陈辉","id":"0fee91a6-f514-46f8-a2bd-49fe7eafb40e","originalAuthorName":"陈辉"},{"authorName":"龚仕顺","id":"8910e5de-6adb-4bd4-ab5b-d3a69670c3c3","originalAuthorName":"龚仕顺"},{"authorName":"雷中兴","id":"5d987b6f-e7d7-4153-97b0-970f586b9e53","originalAuthorName":"雷中兴"},{"authorName":"陈欢","id":"3ea344eb-21de-40d7-913e-ed27b8c6259d","originalAuthorName":"陈欢"}],"doi":"","fpage":"327","id":"17c84901-8f62-42cb-807e-f2ffa70158ff","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"2653752e-c21a-458e-bb36-dd1e5364b7b4","keyword":"木质素改性酚醛树脂","originalKeyword":"木质素改性酚醛树脂"},{"id":"52151b14-3443-4ed7-8ec8-6fe867258c9e","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"f0d7ef20-e4e3-46cb-bf80-115ba476f0e3","keyword":"热解炭","originalKeyword":"热解炭"},{"id":"0a8d3e56-b7e6-419b-9476-310fa09c50b0","keyword":"碳纳米管","originalKeyword":"碳纳米管"}],"language":"zh","publisherId":"xxtcl201504008","title":"硝酸镍复合木质素改性酚醛树脂的热解炭结构演变","volume":"","year":"2015"},{"abstractinfo":"采用提拉法生长了高掺镁铌酸锂晶体, 并采用高温极化法使晶体单畴化. 为研究晶体的成分均匀性、光学均匀性及铁电畴均匀性, 采用光谱、激光干涉、电子探针、显微观察等表征手段测定与观察了晶体的紫外吸收边、OH吸收峰、折射率梯度Δn、晶体径向上的微观成分及晶体的铁电畴结构. 结果表明: 通过采用合适的生长组分和改进提拉法生长工艺获得了高质量的高掺镁铌酸锂晶体. 晶体的紫外吸收边位于308 nm附近, OH吸收峰位于高抗光损伤阈值特征峰2828 nm处, 光学均匀性达Δn< 5.11×10-5. 在1200℃下通过外加电场极化获得了高均匀性且完全单畴的铁电畴结构.","authors":[{"authorName":"涂小牛","id":"5121fc36-32a9-4b44-bbf1-d248330f597f","originalAuthorName":"涂小牛"},{"authorName":"郑燕青","id":"ba19d40f-524a-4dd9-bd4b-9232db2ee7df","originalAuthorName":"郑燕青"},{"authorName":"陈辉","id":"1f063c07-2058-4891-a24d-f2547655ce84","originalAuthorName":"陈辉"},{"authorName":"孔海宽","id":"c23e83a6-cd89-4072-9b6b-d473dc13ca9b","originalAuthorName":"孔海宽"},{"authorName":"忻隽","id":"19d1e4f3-3bbb-4522-bccc-6e19869f7c81","originalAuthorName":"忻隽"},{"authorName":"曾一明","id":"a234876b-7b4a-40c9-bebd-f490d0634987","originalAuthorName":"曾一明"},{"authorName":"施尔畏","id":"ba1f8172-6bf1-4550-85bd-b4e353498f9d","originalAuthorName":"施尔畏"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2010.01257","fpage":"1257","id":"4258db41-d749-4227-a7da-f347b69d37f0","issue":"12","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"523d8f6f-9633-4ac1-8894-d35df65be85e","keyword":"高掺镁铌酸锂晶体","originalKeyword":"高掺镁铌酸锂晶体"},{"id":"369c1142-dfad-4e7a-9176-63f5136f30a6","keyword":" UV absorption edge","originalKeyword":" UV absorption edge"},{"id":"7146d215-7dca-4a31-af75-8df114936bd7","keyword":" OH absorption peak","originalKeyword":" OH absorption peak"},{"id":"5a3870d7-371b-4d0c-8a5d-5ebbdec896d0","keyword":" domain structure","originalKeyword":" domain structure"},{"id":"0a2ddc7a-05a0-4ab3-907f-ae0dea224c70","keyword":" optical homogeneity","originalKeyword":" optical homogeneity"}],"language":"zh","publisherId":"1000-324X_2010_12_9","title":"高均匀性高掺镁铌酸锂晶体的生长与表征","volume":"25","year":"2010"},{"abstractinfo":"某型高速列车车体横梁与补强板的焊缝处出现裂纹并发生断裂.为确定失效机理,对断裂部位宏观形貌、金相组织、化学成分及断口形貌等进行分析.研究表明,横梁失效主要是由近缝区母材的液化裂纹、焊缝处的结晶裂纹、未熔合和气孔等缺陷引起的.这些缺陷主要是源于焊接线能量过大、其它焊接参数选择不当以及焊接结构设计不合理.","authors":[{"authorName":"张明月","id":"59a1ff87-3800-4733-ad89-e5e2acebe2c4","originalAuthorName":"张明月"},{"authorName":"谭梦蕾","id":"df160202-1e1d-4f77-8eb4-c5e238e5ae92","originalAuthorName":"谭梦蕾"},{"authorName":"张民安","id":"827aabbb-7fde-413f-b50f-79803a5f9d18","originalAuthorName":"张民安"},{"authorName":"陈辉","id":"3d2747d1-0d38-4e6a-9907-b4502c2a655d","originalAuthorName":"陈辉"},{"authorName":"周弋琳","id":"c489754f-7a4e-49d9-9617-4d620499f05d","originalAuthorName":"周弋琳"},{"authorName":"刘金博","id":"005c279c-e3d8-451b-9610-99766160cc7b","originalAuthorName":"刘金博"},{"authorName":"陈煜","id":"604b0d75-d67d-4174-a83a-89e27a2e14d5","originalAuthorName":"陈煜"}],"doi":"","fpage":"112","id":"4d8015a6-4796-40fe-b005-320430bc2824","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"1ac7dd3a-e915-4cd2-bec7-1b619711c245","keyword":"车体横梁","originalKeyword":"车体横梁"},{"id":"42e15d85-34b5-4d6f-b87a-371a85f01dd4","keyword":"液化裂纹","originalKeyword":"液化裂纹"},{"id":"2c2cac16-0e1d-40f7-93aa-00e3596a8212","keyword":"结晶裂纹","originalKeyword":"结晶裂纹"},{"id":"26604ac5-4463-4bab-ae63-217c1ff60a4c","keyword":"焊接参数","originalKeyword":"焊接参数"}],"language":"zh","publisherId":"clkxygc201301023","title":"高速列车A7N01S铝合金车体横梁失效原因分析","volume":"31","year":"2013"},{"abstractinfo":"为了改善刚玉-尖晶石浇注料的抗热震性,以板状刚玉、烧结镁铝尖晶石、活性α-Al2O3微粉为主要原料,以铝酸钙水泥为结合剂,添加十二烷基苯环酸钠和水性高分子泡沫为造孔剂,制备了含多孔基质的刚玉-尖晶石浇注料.研究了泡沫加入量(2 kg的原料中分别加入0、100、150、200、250、300 mL泡沫)对刚玉-尖晶石浇注料1 550℃烧后试样的常温物理性能、抗渣渗透性能、抗热震性及显微结构的影响.结果表明:1)引入一定量的泡沫,耐火浇注料基质中可形成分布均匀、圆球形的单分散气孔,但当泡沫加入量为300 mL时,其基质部分的圆球形的单分散气孔减少,并且基质部分结构疏松;2)当泡沫加入量为0、100、150、200 mL时,对试样的抗渣性和常温物理性能无显著影响,但加入量为250、300 mL,会明显降低试样的抗渣性和力学性能;3)多孔基质结构有效地阻止了裂纹的生长,改变了裂纹的扩展方向,提高了其抗热震性.综合考虑刚玉-尖晶石浇注料的各项性能,泡沫的合适加入量为2 kg的原料中加入200 mL.","authors":[{"authorName":"陈欢","id":"f6a50f7c-234e-4012-8e21-6131d129575e","originalAuthorName":"陈欢"},{"authorName":"赵雷","id":"e68b6e4b-8547-457f-98f8-1253af70a852","originalAuthorName":"赵雷"},{"authorName":"梁峰","id":"b6f7ef97-92e1-4e97-a9d8-61a16997ae8e","originalAuthorName":"梁峰"},{"authorName":"杜星","id":"b7a0d9f8-d646-46d5-8150-5d4e2e157a30","originalAuthorName":"杜星"},{"authorName":"陈辉","id":"89b11aac-b24d-426e-a098-9d764410c588","originalAuthorName":"陈辉"},{"authorName":"方伟","id":"5fd1184a-cbbd-4a83-b72f-a4e42e07ece5","originalAuthorName":"方伟"},{"authorName":"陈玉龙","id":"ea48a1c9-a224-498e-b4c2-1f8a9be9fc03","originalAuthorName":"陈玉龙"}],"doi":"10.3969/j.issn.1001-1935.2014.01.005","fpage":"22","id":"552aa389-27b9-413b-815b-1e62903dd290","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"589adddb-2b9c-4c3c-881b-3d8671d5bcbf","keyword":"刚玉-尖晶石浇注料","originalKeyword":"刚玉-尖晶石浇注料"},{"id":"f3a2016a-1aaa-4ec9-aa64-167829084b3e","keyword":"泡沫","originalKeyword":"泡沫"},{"id":"61f42427-88f5-40c2-8652-e3ac19d2331e","keyword":"多孔基质","originalKeyword":"多孔基质"},{"id":"410e1e08-2123-4911-94c5-ccf94f57b274","keyword":"抗热震性","originalKeyword":"抗热震性"}],"language":"zh","publisherId":"nhcl201401005","title":"引入泡沫对含多孔基质的刚玉-尖晶石浇注料性能的影响","volume":"48","year":"2014"}],"totalpage":30,"totalrecord":292}