{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"将碳纳米管(CNT)浆料印刷在不锈钢衬底上,进行了特殊的热烧结和后处理工艺处理.经过特殊热烧结和后处理工艺处理后的试样,在外加电场后,电子发射的开启电场从2.50 V/μm降低到1.40 V/μm.外加电场为3.30 V/μm时场发射电流从8.50 μA/cm<'2>提高到350μA/cm2,场发射效率提高;当场强为4.0 V/μm时,阳极上荧光点的面密度约从(5~8)个/cm2提高到(22~26)个/cm2,发射均匀性得到有效的提高.讨论了丝网印刷CNT薄膜中电子的场发射实验,表明特殊的热烧结和后处理工艺使CNT之间的残留物厚度变薄,而且使更多的CNT均匀地露出薄膜表面,只有电子隧穿达到裸露的CNT才能有效地发生场发射.","authors":[{"authorName":"张秀霞","id":"c42eca41-5639-4079-9222-a8398b0b329c","originalAuthorName":"张秀霞"},{"authorName":"朱长纯","id":"b96c74d5-c76b-40d4-9f25-fdc64fda8e59","originalAuthorName":"朱长纯"},{"authorName":"曾凡光","id":"83045837-cca1-41e1-988f-7211d54d538a","originalAuthorName":"曾凡光"}],"doi":"10.3969/j.issn.1007-2780.2008.05.017","fpage":"611","id":"ed06545a-d736-40a5-a332-79a44d56373a","issue":"5","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"1dd6ffda-06e8-4f09-a054-fe9deb9b184f","keyword":"丝网印刷","originalKeyword":"丝网印刷"},{"id":"6869b529-64ac-46ef-b3e1-4ca2fb517700","keyword":"碳纳米管薄膜","originalKeyword":"碳纳米管薄膜"},{"id":"3115820d-464d-4e70-b87e-29e0f2fbf8b7","keyword":"后处理","originalKeyword":"后处理"},{"id":"dd0c9bea-80b3-4dec-bb6e-f75eb6780814","keyword":"场致发射","originalKeyword":"场致发射"}],"language":"zh","publisherId":"yjyxs200805017","title":"丝网印刷碳纳米管薄膜的电子发射","volume":"23","year":"2008"},{"abstractinfo":"为解决微小型器件电源体积大、质量重、集成难等问题,利用碳纳米管薄膜材料的热电特性,设计了一种新型的薄膜式热电发电机,可将热气流直接转化为电能。建立了薄膜热电发电机物理模型,研究了热电发电理论和控制方程,对碳纳米管薄膜热电发电单元进行有限元仿真,分析了输出电压和输出功率的变化规律。提出了减小内阻的方法,为改进碳纳米管薄膜热电发电实验模型提供理论依据。利用浮动催化化学气相沉积法制备了导电性较好的透明碳纳米管薄膜,其热电特性与仿真结果一致。碳纳米管薄膜柔韧性较好,将多个发电单元串联连接,构建圆柱体、截顶圆锥体等多种薄膜式热电发电机结构,易与微光机电系统集成,具有广阔的应用前景和实用价值。","authors":[{"authorName":"卢江雷","id":"0303a33e-3b08-4c77-b2df-2b48e877f5fc","originalAuthorName":"卢江雷"},{"authorName":"王广龙","id":"83f0786a-cd97-43e6-8013-703d0374af7a","originalAuthorName":"王广龙"},{"authorName":"孙连峰","id":"3c24486c-7656-4910-a96e-38fb013a1ac0","originalAuthorName":"孙连峰"},{"authorName":"高凤岐","id":"84f1da59-2841-4f4f-817b-fd6bf3ced227","originalAuthorName":"高凤岐"},{"authorName":"余芳","id":"655cf059-ae55-4b5f-8a9d-b9cc3e130483","originalAuthorName":"余芳"},{"authorName":"王钢","id":"025f98eb-8b55-4251-8ca7-81ad26d11389","originalAuthorName":"王钢"},{"authorName":"王红培","id":"931b335a-3dfe-44be-94a1-54b405414957","originalAuthorName":"王红培"}],"doi":"","fpage":"2304","id":"72d3f871-e547-4c9f-9066-9123b903c799","issue":"17","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c7e9f40e-d79a-47d5-b8a8-38516d69ce2a","keyword":"碳纳米管薄膜","originalKeyword":"碳纳米管薄膜"},{"id":"2d6ee663-5ca0-4143-8a11-77d6e85fb8dd","keyword":"热电发电机","originalKeyword":"热电发电机"},{"id":"58a5ceac-5c9b-4349-93cc-f6a75da82ef5","keyword":"热电耦合","originalKeyword":"热电耦合"},{"id":"bee26192-fdcf-4913-84a2-7c27478b03ac","keyword":"有限元","originalKeyword":"有限元"},{"id":"dff829a7-3ea1-4cd5-9000-a6ada9f08811","keyword":"热气流","originalKeyword":"热气流"}],"language":"zh","publisherId":"gncl201217008","title":"碳纳米管薄膜热电发电机设计及耦合分析","volume":"43","year":"2012"},{"abstractinfo":"宏观碳纳米管(Carbon nanotube,CNT)薄膜的成功制备是发展有机热电材料的一个重要方向.由于CNT薄膜厚度仅为200 nm且多孔、粗糙度大,对其热学特性表征极为困难.本文提出应用3ω技术测量由单壁(Single-walled,SW)CNT薄膜卷曲成的宏观纤维的热导率和热扩散率,讨论了卷曲层数对结果的影响及估算薄膜面向热导率和热扩散率的思路.所研究的两个SWCNT薄膜的面向热导率为3.4 W/(m.K)和2.0 W/(m.K),热扩散率为24 mm2/s和21mm2/s.结果表明SWCNT薄膜将为发展低成本有机热电材料领域做出贡献.","authors":[{"authorName":"邱琳","id":"f3789614-5c04-4499-b8c0-af610bdfa6a9","originalAuthorName":"邱琳"},{"authorName":"郑兴华","id":"ad8407ed-5594-4cec-b1e1-c880ac162bc7","originalAuthorName":"郑兴华"},{"authorName":"唐大伟","id":"66817d36-333d-4be5-b4a4-d44c89f19151","originalAuthorName":"唐大伟"},{"authorName":"周文斌","id":"a506f16a-c141-4221-b9bf-ae7c6abf8399","originalAuthorName":"周文斌"},{"authorName":"解思深","id":"dc680e27-6548-44d0-a74e-4de2bec8c3bf","originalAuthorName":"解思深"}],"doi":"","fpage":"718","id":"e1722a76-4743-4290-b4c1-7481b51a4e60","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"405da64a-44c6-4c1b-88d8-5f4d5d74e05a","keyword":"碳纳米管纤维","originalKeyword":"碳纳米管纤维"},{"id":"c2d9e3c9-5e58-47c0-926b-033661beca45","keyword":"碳纳米管薄膜","originalKeyword":"碳纳米管薄膜"},{"id":"7fb691df-3cc6-4b27-8012-78f7a325445a","keyword":"热导率","originalKeyword":"热导率"},{"id":"7a650c4b-008c-4410-ab4b-eba7fa992011","keyword":"热扩散率","originalKeyword":"热扩散率"},{"id":"bbaff020-6a23-4d7a-8f22-7b32bfd3df6d","keyword":"谐波法","originalKeyword":"谐波法"}],"language":"zh","publisherId":"gcrwlxb201404022","title":"碳纳米管纤维及薄膜的热导率和热扩散率研究","volume":"35","year":"2014"},{"abstractinfo":"采用低压CVD法制备得到的金属镍基碳纳米管薄膜直接作为电容去离子器(CDD)的电极材料,并对碳纳米管薄膜进行了扫描电镜观察和比表面与孔径分析,探讨了该电极材料的电容吸附性能.NaF溶液的吸附实验结果表明:该电极材料的去离子效果明显、且可再生和重复使用.","authors":[{"authorName":"李茂刚","id":"00f35775-19d5-4c13-92ca-863aa2a5f794","originalAuthorName":"李茂刚"},{"authorName":"王新征","id":"b8c37e4f-5747-4a4f-addb-9420e41ec0d8","originalAuthorName":"王新征"},{"authorName":"林开利","id":"44c75316-3039-4b46-a757-e4f027c0cdc3","originalAuthorName":"林开利"},{"authorName":"陈奕卫","id":"99b568fe-66a2-4377-a686-ac844aa28e25","originalAuthorName":"陈奕卫"},{"authorName":"孙卓","id":"6be11e74-078c-490a-9c77-ccfd8061c05d","originalAuthorName":"孙卓"},{"authorName":"成荣明","id":"c49b0e87-1e55-4b4a-a36b-9884fa9b4656","originalAuthorName":"成荣明"}],"doi":"10.3969/j.issn.1007-4252.2007.01.007","fpage":"35","id":"ae47a907-7b4b-4eef-914c-9734909eaa63","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"f6a80992-6af2-4b4e-983d-77cdeaa4163e","keyword":"碳纳米管薄膜","originalKeyword":"碳纳米管薄膜"},{"id":"be909419-1403-4270-8dd4-02f1a8a7e656","keyword":"电容吸附","originalKeyword":"电容吸附"},{"id":"a3373d51-25f9-4222-9372-1e2dcdec8dd6","keyword":"可再生","originalKeyword":"可再生"}],"language":"zh","publisherId":"gnclyqjxb200701007","title":"碳纳米管薄膜电极的制备及电容吸附性能","volume":"13","year":"2007"},{"abstractinfo":"采用酞菁铁高温热解方法在直径为5cm的硅基底上生长了定向CNT薄膜,并对其强流脉冲发射特性进行了表征.测试结果表明,在单脉冲条件下,当宏观场强为11.7V/μm时,发射脉冲电流的峰值约为109.4A;而在双脉冲模式下,当第一脉冲峰值宏观场强为8.6V/μm,第二脉冲峰值宏观场强为5.4V/μm时,第一脉冲和第二脉冲峰值电流分别约为117.2和720.8A.第二电流脉冲的电流峰值出现放大效应,放大倍数约为6.15倍.","authors":[{"authorName":"曾凡光","id":"730174cd-7119-4506-8f9c-acde7d5a136f","originalAuthorName":"曾凡光"},{"authorName":"李昕","id":"62efcd63-12a2-47ae-a91a-38f99d867a3f","originalAuthorName":"李昕"},{"authorName":"左曙","id":"63643b7a-10ee-4e73-acc1-9d4e5af2f552","originalAuthorName":"左曙"},{"authorName":"夏连胜","id":"d4093dbb-1bb6-492c-894c-cf553f4a8622","originalAuthorName":"夏连胜"},{"authorName":"谌怡","id":"68dbf6e0-6c42-48c1-a167-94d9de6c98a0","originalAuthorName":"谌怡"},{"authorName":"刘星光","id":"f1c173c8-ec37-4106-a7f0-c8d18d371af8","originalAuthorName":"刘星光"},{"authorName":"张篁","id":"8c4b8ef2-b34c-4406-8d54-0f28be34b0b8","originalAuthorName":"张篁"},{"authorName":"张锐","id":"6164ba12-8a51-445a-afe5-11587330e4fc","originalAuthorName":"张锐"}],"doi":"","fpage":"609","id":"e03036db-a4c9-4bfa-90bb-1bcb6c5868d0","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6fb33218-d2a8-4e77-af1a-70b9e90283b5","keyword":"热解法","originalKeyword":"热解法"},{"id":"f415a1b6-5c4b-4b2b-9eef-775d0d76509e","keyword":"碳纳米管薄膜","originalKeyword":"碳纳米管薄膜"},{"id":"c0f3df30-17ae-4287-b489-8fe810012947","keyword":"强流脉冲发射","originalKeyword":"强流脉冲发射"},{"id":"5b230e21-be2a-4d5c-a333-ed02d544d049","keyword":"峰值电流密度","originalKeyword":"峰值电流密度"}],"language":"zh","publisherId":"gncl201104008","title":"硅基底上热解法生长CNT薄膜的强流脉冲发射特性","volume":"42","year":"2011"},{"abstractinfo":"以二茂铁为催化剂前驱体,氢气为载气,乙炔为碳源,硅片作衬底,用化学气相沉积法,采用不同的催化剂引入方式,在700℃下分别制备出定向碳纳米管薄膜及非定向碳纳米管薄膜.并基于实验结果对影响生长定向碳纳米管的因素进行分析,表明催化剂颗粒的诱导作用是导致生长定向碳纳米管的重要原因.","authors":[{"authorName":"赵艳珩","id":"bb8e077d-8195-4227-8c7f-5a9d599e216e","originalAuthorName":"赵艳珩"},{"authorName":"曾葆青","id":"c4562048-9d01-4fcb-a662-dd1b3866b18e","originalAuthorName":"曾葆青"},{"authorName":"赵约瑟","id":"c9935c83-e0a7-4a2f-957b-cdb5e9434183","originalAuthorName":"赵约瑟"},{"authorName":"张文锋","id":"97638886-fd8b-4e3a-a987-12fac5379ee1","originalAuthorName":"张文锋"},{"authorName":"田浩希","id":"5fa5131b-66ba-4c83-8b65-6ce9676b1f6d","originalAuthorName":"田浩希"}],"doi":"","fpage":"112","id":"347036d3-f773-4076-8c4d-39f7a01a1cee","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4f82e3c6-2a40-440a-b620-9109615dc4a2","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"a5a61c57-9db1-45dd-b6c8-a8a8b30e0fc4","keyword":"定向生长","originalKeyword":"定向生长"},{"id":"487abc92-bc34-4946-9a13-dd054990e1a9","keyword":"催化剂诱导","originalKeyword":"催化剂诱导"}],"language":"zh","publisherId":"cldb2006z1035","title":"定向碳纳米管薄膜的制备","volume":"20","year":"2006"},{"abstractinfo":"概述了碳纳米材料的发展及它们的性能和应用.同时介绍了一些比较成熟的制备纳米材料的技术.在此基础上分析了碳纳米管的形成过程和碳纳米管的微观结构.以及碳纳米管制备工艺对微观结构的影响.","authors":[{"authorName":"夏正才","id":"e1867f9c-dc93-44b7-a2d7-6e08e90fb3f9","originalAuthorName":"夏正才"},{"authorName":"唐超群","id":"e5a187ae-4993-40bc-8145-9f597b49fa6a","originalAuthorName":"唐超群"},{"authorName":"曹霞","id":"f9af0778-9dff-48e4-9a03-0323f8be4f4a","originalAuthorName":"曹霞"}],"doi":"","fpage":"49","id":"cfd3281e-46b4-474c-8869-3e342b2283f7","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f5b32d45-810a-49f6-9b5d-4ad7c3df26a1","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"1426b56e-909f-4139-888d-3047a25a758a","keyword":"纳米结构","originalKeyword":"纳米结构"}],"language":"zh","publisherId":"cldb200002018","title":"碳纳米管","volume":"14","year":"2000"},{"abstractinfo":"碳纳米管独特的物理性质、化学稳定性和高机械强度,使其成为电子发射领域最有潜力的场发射阴极材料.分析了目前国内外场发射碳纳米管薄膜的制备技术和应用中存在的问题,并讨论了解决方案.","authors":[{"authorName":"饶早英","id":"4cb5f0f1-6087-4a26-b866-e13748f25b89","originalAuthorName":"饶早英"},{"authorName":"王蜀霞","id":"4fac2d87-b0d9-427f-ba51-1c34778f3613","originalAuthorName":"王蜀霞"},{"authorName":"耿晓菊","id":"4c4b563b-44bb-4129-8659-cba81de03632","originalAuthorName":"耿晓菊"}],"doi":"","fpage":"9","id":"fefb08a0-a0a8-4086-bb7e-ee3795474803","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5de5ed32-2e6b-4aa7-8e8b-cdd8573c3f9c","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"5740be67-7cb8-4602-9c69-1e381849e657","keyword":"薄膜场发射","originalKeyword":"薄膜场发射"},{"id":"5a75e311-1806-4ccd-a6a0-d484890e0136","keyword":"制备工艺","originalKeyword":"制备工艺"}],"language":"zh","publisherId":"cldb2007z2004","title":"碳纳米管场发射薄膜的研究现状","volume":"21","year":"2007"},{"abstractinfo":"分别对修饰的和未修饰的多壁碳纳米管(MWCNTs)薄膜的湿敏特性进行了研究,发现修饰的多壁碳纳米管(MWCNTs)薄膜对湿度十分敏感.测量其湿敏特性表明:其电阻值随相对湿度有明显的变化,并呈线性关系,通过拟合计算得到修饰的和未修饰的多壁碳纳米管电阻率相对湿度系数分别为2.354×10-2Ω·m/RH和1.534×10-2Ω·m/RH.研究结果表明,碳纳米管在湿度传感器领域将有巨大的应用前景.","authors":[{"authorName":"曹春兰","id":"31117ec3-9c58-4588-ae52-fd0723faf0ec","originalAuthorName":"曹春兰"},{"authorName":"廖克俊","id":"73e3121c-41b7-4877-993c-76036018f763","originalAuthorName":"廖克俊"},{"authorName":"罗建邦","id":"2059070c-c765-4da0-9a91-4879d859045d","originalAuthorName":"罗建邦"},{"authorName":"韦逢艳","id":"586b7a4d-99d3-4202-b8bd-9bfb1a39b966","originalAuthorName":"韦逢艳"}],"doi":"","fpage":"84","id":"760d6349-5a6a-4d6a-beef-79eb494ab7d6","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a5bb2f00-123b-4c42-b317-9793d693820a","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"62660741-bcf9-47da-a9fb-7ff664cfdba5","keyword":"湿敏特性","originalKeyword":"湿敏特性"},{"id":"91b55505-ec1d-4fba-9fab-a6b78c69583d","keyword":"薄膜电阻","originalKeyword":"薄膜电阻"},{"id":"b1abd557-b94d-4123-9cf3-7ae9ddb35b36","keyword":"化学修饰","originalKeyword":"化学修饰"}],"language":"zh","publisherId":"cldb2005z2026","title":"碳纳米管薄膜的湿敏特性测试","volume":"19","year":"2005"},{"abstractinfo":"采用化学气相沉积法制备了阵列碳纳米管薄膜,对薄膜生长厚度进行了系统研究.利用扫描电子显微镜(SEM)、拉曼光谱(Raman)对样品形貌以及结构进行了表征.结果发现,在相同的生长时间和一定的催化剂浓度范围内,阵列碳纳米管的薄膜厚度随催化剂浓度提高而增加;在生长时间相同时,阵列碳纳米管薄膜厚度随载气流速的增加而降低,且下降趋势近似为线性;随着生长时间的增长,阵列碳纳米管薄膜的厚度也随之增加,且在前60min生长速度最快达到24μm/min,60min之后生长速度减缓.","authors":[{"authorName":"马康夫","id":"0f60f395-eb9f-4070-a83c-15cd0875fbe4","originalAuthorName":"马康夫"},{"authorName":"付志兵","id":"643fb10c-825f-4c5d-aac4-f7ee01d50aff","originalAuthorName":"付志兵"},{"authorName":"杨曦","id":"2ff40273-f706-4a79-9a8e-995815781649","originalAuthorName":"杨曦"},{"authorName":"王朝阳","id":"7609dc6a-14e0-4311-833d-393ab2849b35","originalAuthorName":"王朝阳"},{"authorName":"唐永建","id":"abc6ba7a-0957-40ac-9987-edc4c819e520","originalAuthorName":"唐永建"}],"doi":"10.3969/j.issn.1001-9731.2013.15.007","fpage":"2162","id":"81867cdf-d419-40f4-83e7-b72dd903ff66","issue":"15","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"60ac9ab4-a70f-49eb-9272-21cece5a5282","keyword":"阵列碳纳米管","originalKeyword":"阵列碳纳米管"},{"id":"c502d038-5ca2-43b8-a99f-4d46e2c9f13f","keyword":"厚度","originalKeyword":"厚度"},{"id":"aa48e2a1-44f1-46a3-8b59-98e788a6e6e8","keyword":"生长速度","originalKeyword":"生长速度"}],"language":"zh","publisherId":"gncl201315007","title":"阵列碳纳米管薄膜厚度调控研究","volume":"44","year":"2013"}],"totalpage":3503,"totalrecord":35026}