{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"建立了C/C预制体孔隙率与C/SiC复合材料组成的关系模型,并通过表征不同孔隙率的C/C预制体气相硅浸渗制备的C/SiC复合材料的组成和力学性能对模型进行了验证.研究发现,实验结果与模型预测结果基本一致.随着C/C预制体孔隙率的增大,C/SiC复合材料的密度出现先上升后下降的规律,力学性能也遵从同样的规律.XRD分析和相含量测试结果均表明复合材料的相含量与模型预测结果基本一致.实验结果与模型预测结果产生偏差的主要原因是裂解碳反应不完全.","authors":[{"authorName":"刘伟","id":"95aad9dd-a022-47e2-89ac-2ae2edd66673","originalAuthorName":"刘伟"},{"authorName":"刘荣军","id":"bac23daf-c64b-4d5f-8fe4-b2ba993c54a1","originalAuthorName":"刘荣军"},{"authorName":"曹英斌","id":"0907e944-0194-4e7a-b59b-15a4b168d7cc","originalAuthorName":"曹英斌"},{"authorName":"杨会永","id":"887734ed-d5f5-46c1-89a9-3c151b612a43","originalAuthorName":"杨会永"}],"doi":"","fpage":"52","id":"717ff9a1-bc63-4c95-a822-11744fe92baf","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"622d8717-19d7-4795-9b18-2294120c1f13","keyword":"C/C","originalKeyword":"C/C"},{"id":"d6cb402e-90e1-4ab4-8e81-fc65bce066b7","keyword":"C/SiC","originalKeyword":"C/SiC"},{"id":"77db0683-efb0-43d1-ac5f-78091a5318e4","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"a3ba1439-5a01-49d3-95c3-2658875e4463","keyword":"模型","originalKeyword":"模型"},{"id":"a99d8cec-15f0-4de3-975c-777a62cccdd0","keyword":"气相硅浸渗","originalKeyword":"气相硅浸渗"}],"language":"zh","publisherId":"blgfhcl201302011","title":"C/C预制体孔隙率与气相硅浸渗制备C/SiC复合材料性能关系的模型研究","volume":"","year":"2013"},{"abstractinfo":"总结了制备C/C的各种化学气相渗透方法,指出了其优缺点.缩短致密化时间、协调气相反应和表面沉积反应之间的竞争是快速致密化方法要解决的首要问题.介绍了热解炭的微观结构和石墨化度及其沉积机理的新发展.近期的研究集中在化学反应成分分析和数值模拟渗透过程上.展望了化学气相渗透研究的方向,探求热解炭沉积机理的必要性并指出了快速致密化方法是实现低成本、高效率制备高性能C/C的必由之路.","authors":[{"authorName":"张明瑜","id":"cf43d160-e36c-4a7d-87d6-d39990264e7c","originalAuthorName":"张明瑜"},{"authorName":"黄启忠","id":"60b267b9-f873-48be-91e0-e2f4da1506e3","originalAuthorName":"黄启忠"},{"authorName":"朱建军","id":"5927f3b8-dc55-4ca3-af37-b9d7fb5619ad","originalAuthorName":"朱建军"},{"authorName":"尹彩流","id":"f21d88d4-7e5d-424a-a2f3-fd5a6abfc841","originalAuthorName":"尹彩流"}],"doi":"","fpage":"72","id":"1e77dd55-4fa6-445a-a504-bff3cc2b3f97","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"739003bf-f5a0-4a9e-80c6-97089cdb2618","keyword":"化学气相渗透","originalKeyword":"化学气相渗透"},{"id":"6ff07a70-e755-4426-b138-034424921245","keyword":"C/C","originalKeyword":"C/C"},{"id":"eb009ce9-e799-4f56-a757-924e8baf75c2","keyword":"热解炭","originalKeyword":"热解炭"}],"language":"zh","publisherId":"cldb200704018","title":"化学气相渗透工艺制备C/C研究进展","volume":"21","year":"2007"},{"abstractinfo":"The tensile properties of three different carbonfiberreinforced carbon composites (C/C), mat C/C, 2D laminate and 4D C/C, were investigated under the combined influence of temperature and loading rate. From the experiments the following could be concluded: loading rate between 10-1-10 mm/min was valid; the fracture stress of the three kinds of C/C composites increased with increasing temperature in the range from room temperature to 1900, and the initial modulus of 2D laminate C/C composites increased with the increase of temperature up to 2000.","authors":[{"authorName":"Author S.R. Zhou","id":"c2a82585-56e9-4601-90fd-5241d2746b31","originalAuthorName":"Author S.R. Zhou"},{"authorName":" S.R. Qiao","id":"b1fd368c-ece6-4fb3-a8e8-7d6db32f1a76","originalAuthorName":" S.R. Qiao"},{"authorName":" S.H. Bai and C.S. Tian Faculty 401","id":"5713434e-623f-484f-9109-eb95ae20f387","originalAuthorName":" S.H. Bai and C.S. Tian Faculty 401"},{"authorName":" Northwestern Polytechnical University","id":"158fb6c3-e4e8-4bd2-9ba6-fdcb315a7b0f","originalAuthorName":" Northwestern Polytechnical University"},{"authorName":" Xian 710072","id":"e06913e4-0769-454c-88a5-daeac6659dde","originalAuthorName":" Xian 710072"},{"authorName":" ChinaManuscript received 18 October 1998","id":"a5928163-2719-438f-aec0-c8b8e7b0cb2d","originalAuthorName":" ChinaManuscript received 18 October 1998"}],"categoryName":"|","doi":"","fpage":"97","id":"6c877322-8b08-4d72-a78d-1c25c2a56ac2","issue":"1","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"26e36578-50ab-40a1-a4a6-f4cc855811e0","keyword":"tensile testing","originalKeyword":"tensile testing"},{"id":"4d54d81c-2f94-4d27-a095-5a706a96dd2d","keyword":"null","originalKeyword":"null"},{"id":"c804905f-178e-473e-a021-9bf4badc4515","keyword":"null","originalKeyword":"null"},{"id":"d1d6f714-1c6c-47e8-89fb-c34a46dc7bd1","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1999_1_11","title":"TENSILE TESTING OF C/C COMPOSITES ATHIGH TEMPERATURES","volume":"12","year":"1999"},{"abstractinfo":"通过PIP工艺制备了C/C-PAA、C/C-FA复合材料,对PAA、FA裂解碳的XRD、浸渍效果以及C/C-PAA和C/C-FA的弯曲强度进行了分析.结果表明:PAA裂解碳的炭质量、浸渍效果较好,C/C-PAA弯曲强度比C/C-FA弯曲强度高34.9%,弯曲模量对比不明显.","authors":[{"authorName":"张万强","id":"aa1453dc-76a8-480b-b92f-a90c40c0c4f7","originalAuthorName":"张万强"},{"authorName":"赵英民","id":"a92e4e60-e2b8-4402-b4f4-412a2f663168","originalAuthorName":"赵英民"},{"authorName":"王涛","id":"8b0b72da-fea1-413d-89ef-218af1a306bc","originalAuthorName":"王涛"},{"authorName":"詹万初","id":"15d99d71-7960-46ad-b564-759078fb9773","originalAuthorName":"詹万初"}],"doi":"10.3969/j.issn.1007-2330.2014.05.012","fpage":"55","id":"87e058fa-4c5e-414b-ba84-77c7b20a91ae","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"c5c4cb44-6515-43b7-8979-cf8b27d4644b","keyword":"聚芳基乙炔","originalKeyword":"聚芳基乙炔"},{"id":"2284bb2a-7a4b-4674-9a0d-e57b00a5ec7a","keyword":"糠酮树脂","originalKeyword":"糠酮树脂"},{"id":"e44168b2-c7f6-4f68-a871-f8d52c92682c","keyword":"X射线衍射","originalKeyword":"X射线衍射"},{"id":"413f9215-381b-486b-adf4-9f9a2bd5b15e","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"}],"language":"zh","publisherId":"yhclgy201405012","title":"C/C-PAA与C/C-FA弯曲性能对比","volume":"44","year":"2014"},{"abstractinfo":"利用正交偏光可分辨C/C复合材料中不同类型的沉积炭,通过旋转检偏器可测量C/C复合材料中沉积炭的消光角度.列举了偏光观察C/C复合材料实验过程中经常遇到的问题,介绍了测定消光角度的方法,简要概述了近年来研究热解炭各向异性的成果.","authors":[{"authorName":"张保法","id":"c6ddd8ae-a1c3-4c6a-a9d5-167a5f45ed8c","originalAuthorName":"张保法"},{"authorName":"阮宏武","id":"67193f05-32ab-4e6b-877f-94bbec7a4bdd","originalAuthorName":"阮宏武"},{"authorName":"李东生","id":"9d18c93d-a74b-419a-b0d1-a7d237cb6876","originalAuthorName":"李东生"}],"doi":"10.3969/j.issn.1001-4381.2006.01.008","fpage":"32","id":"62fa4c47-fcb7-49c8-b604-2da3d680c16a","issue":"1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"a86a9bf8-5fcc-42fe-bfb4-6291b8a07cea","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"f5144897-9ec5-4aad-94c2-0f6104391a75","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"},{"id":"d5346743-87db-4ec3-a271-a1b932e1c21d","keyword":"消光角度","originalKeyword":"消光角度"},{"id":"4ca20f64-a193-4da2-9883-db3cf9943dc0","keyword":"偏光显微镜","originalKeyword":"偏光显微镜"}],"language":"zh","publisherId":"clgc200601008","title":"偏光观察C/C复合材料","volume":"","year":"2006"},{"abstractinfo":"通过化学气相渗透(CVI)、树脂浸渍/碳化(I/C)的工艺制成多孔的C/C预制件,采用气体压力浸渗方法向预制体中渗入铜,制备出C/C-Cu复合材料.以高密度C/C复合材料(1.9g/cm3)作为对比样,在MM-200型磨损试验机上对其摩擦磨损性能进行测试,并对其微观结构和摩擦磨损机理进行分析.研究结果表明:C/C-Cu的摩擦系数比C/C复合材料的低,这主要与摩擦表面的摩擦膜有关,铜在摩擦力带动下填充摩擦表面的凹坑,并与碳材料共同形成摩擦膜,摩擦膜的碳含量越高,润滑效果越好.当C/C预制件密度为1.59 g/cm3时,C/C-Cu的摩擦系数和磨损量均小于C/C复合材料,摩擦磨损性能良好.","authors":[{"authorName":"孙乐","id":"7691bec1-6fcb-4a0d-8b62-04188f3e4adf","originalAuthorName":"孙乐"},{"authorName":"方向青","id":"6c33e772-1172-4a14-b0b3-a8a10f8688a7","originalAuthorName":"方向青"},{"authorName":"孟广慧","id":"5004ba67-b745-4cd5-9293-53add1af5c79","originalAuthorName":"孟广慧"}],"doi":"10.14136/j.cnki.issn 1673-2812.2016.05.027","fpage":"815","id":"812ff9f0-06b4-40a2-89b2-6847cda22bc9","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"48845b05-5208-4295-a155-19b505b3504d","keyword":"C/C-Cu","originalKeyword":"C/C-Cu"},{"id":"2adeb3b0-ef2f-4620-8a9e-59a0d420d37d","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"},{"id":"0b57b776-0997-4378-81ca-0bd7c198143c","keyword":"摩擦膜","originalKeyword":"摩擦膜"}],"language":"zh","publisherId":"clkxygc201605027","title":"C/C及C/C-Cu复合材料的摩擦磨损性能","volume":"34","year":"2016"},{"abstractinfo":"We report the electronic transport properties of a composite system comprising zero dimensional superconducting NbC(C) nanocapsules and carbon nanofiber matrix. DC susceptibility measurements of the nanocomposite indicate that the critical temperature (T-C) of NbC nanocrystals is 10.7 K. The temperature dependence of electrical resistivity of the specimen pellet follows the Mott's T-1/4 law in a temperature range between T-C of NbC and 300 K, owing to a strong degree of structural disorder in the carbon matrix. Below the T-C of NbC, when the change of its electrostatic energy Delta E is far greater than the thermal energy, an electron will be localized on an isolated NbC nanocrystal at very low temperatures, leading to \"Coulomb Blockade.\" As a result, a collective behavior of the single-electron tunneling effect takes place in a three-dimensional granular superconductors' network composed of the NbC/carbon/NbC tunneling junctions. The superconducting gap of NbC crystals is not found in the current-voltage curves, due to the suppression of surface superconductivity through the contact between NbC and carbon shells.","authors":[],"categoryName":"|","doi":"","fpage":"","id":"50eadb9c-6fef-4bce-838a-be3d7d4904a2","issue":"19","journal":{"abbrevTitle":"PRB","id":"48ba155b-d6de-484c-bd85-973be949b8c5","issnPpub":"1098-0121","publisherId":"PRB","title":"Physical Review B"},"keywords":[{"id":"3b258b07-8ad2-4165-9873-4054bd188efd","keyword":"zero-dimensional superconductor;granular metal-films;particles;conduction;nanocapsules;percolation;samples","originalKeyword":"zero-dimensional superconductor;granular metal-films;particles;conduction;nanocapsules;percolation;samples"}],"language":"en","publisherId":"1098-0121_2006_19_3","title":"Electronic transport properties of NbC(C)-C nanocomposites","volume":"73","year":"2006"},{"abstractinfo":"Oxidation behavior of C/C-SiC gradient matrix composites and C/C composites were compared in stationary air. The results show that oxidation threshold of C-SiC materials increases with the amount of SiC particles in the codeposition matrix. Oxidation rate of C/C-SiC gradient matrix composites is significantly lower than that of C/C material. The micro-oxidation process was observed by SEM.","authors":[],"categoryName":"|","doi":"","fpage":"543","id":"7111a812-ad4a-463f-a32e-8d996d0c5bc6","issue":"5","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[{"id":"8c520fc8-2a6c-4ebb-a680-32aa4dcec003","keyword":"carbon carbon composites","originalKeyword":"carbon carbon composites"}],"language":"en","publisherId":"1005-0302_2001_5_1","title":"Oxidation behavior of C/C-SiC gradient matrix composites","volume":"17","year":"2001"},{"abstractinfo":"Oxidation behavior of C/C-SiC gradient matrix composites and C/C composites were compared in stationary air. The results show that oxidation threshold of C-SiC materials increases with the amount of SiC particles in the codeposition matrix. Oxidation rate of C/C-SiC gradient matrix composites is significantly lower than that of C/C material. The micro-oxidation process was observed by SEM.","authors":[{"authorName":"Jingyi DENG","id":"8dde50aa-d497-45cf-989f-604a10850d71","originalAuthorName":"Jingyi DENG"},{"authorName":" Wenchuan LIU","id":"10481593-0372-4347-8b70-859c33b6a1fd","originalAuthorName":" Wenchuan LIU"},{"authorName":" Haifeng DU","id":"63bd5978-9358-4a01-b4e1-7857e8a47427","originalAuthorName":" Haifeng DU"},{"authorName":" Huiming CHEN","id":"d19b1025-3965-4d2d-8c31-22ce9f88e7df","originalAuthorName":" Huiming CHEN"},{"authorName":" Yiyi LI","id":"96eb439d-b0b6-4385-bb73-a1068026bb22","originalAuthorName":" Yiyi LI"}],"categoryName":"|","doi":"","fpage":"543","id":"9a45454d-684f-41d4-b2d4-9a5144678d18","issue":"5","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[],"language":"en","publisherId":"1005-0302_2001_5_17","title":"Oxidation behavior of C/C-SiC gradient matrix composites","volume":"17","year":"2001"},{"abstractinfo":"综述了C/C-SiC摩擦材料的研究现状,以及C/C-SiC摩擦材料的发展历程.详细分析C/C-SiC摩擦材料的摩擦磨损性能影响因素及机理,介绍了C/C-SiC摩擦材料的改性及应用现状,并对未来的研究重点进行了展望.","authors":[{"authorName":"李波","id":"5a2732f1-33f7-443f-bbb2-9eb4d75ab4ab","originalAuthorName":"李波"},{"authorName":"崔园园","id":"41a6b86b-6123-477c-97d4-f03d05c4388e","originalAuthorName":"崔园园"},{"authorName":"李爱军","id":"c364aafe-05c8-475f-a363-c6e916f0ef57","originalAuthorName":"李爱军"},{"authorName":"周春节","id":"dd77936d-14d2-462e-8360-06405f855d87","originalAuthorName":"周春节"},{"authorName":"张家宝","id":"3928974f-7b8a-4f95-8017-6b81c0d684f2","originalAuthorName":"张家宝"},{"authorName":"白瑞成","id":"768d13b0-51f7-4925-9e5c-ad934eb052e8","originalAuthorName":"白瑞成"}],"doi":"","fpage":"43","id":"71cd1fc3-05c3-40f2-87c7-a1a929a999f5","issue":"1","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"e9b7a5c5-1e45-451f-8e3e-92e20d18fe16","keyword":"C/C-SiC摩擦材料","originalKeyword":"C/C-SiC摩擦材料"},{"id":"6de3a6cc-df36-4c0f-b3d3-5ee5e1be7a73","keyword":"摩擦磨损性能","originalKeyword":"摩擦磨损性能"},{"id":"2c385722-2acb-4791-aa92-fdf8050a0d23","keyword":"机理","originalKeyword":"机理"},{"id":"9b153a44-b072-452e-8fc8-13e03e64563e","keyword":"改性","originalKeyword":"改性"}],"language":"zh","publisherId":"shjs201501010","title":"C/C-SiC摩擦材料的研究进展","volume":"37","year":"2015"}],"totalpage":2339,"totalrecord":23385}