{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用输出波长为1064nm、脉冲宽度为20ns的钕玻璃YAG激光,对2A02铝合金进行了表面冲击试验。通过对激光冲击处理试样的HREM高分辨像观察,分析了激光冲击2A02铝合金材料微结构中的空位现象。结果表明,考察区域在激光冲击超高应变率作用下,在形成大量位错的同时,伴随形成相应的空位;空位片成为激光冲击超高应变率形变条件下铝合金基体中的特征微结构;空位和位错的重组作用加剧了点阵畸变,引起的第三类内应力和纳晶化提高了激光冲击表面的硬度和残余压应力。","authors":[{"authorName":"罗新民","id":"d970cf73-1c57-4770-a46b-1796fd8709ed","originalAuthorName":"罗新民"},{"authorName":"张静文","id":"75cf0abe-e5c7-4a67-bf84-60a1722c582c","originalAuthorName":"张静文"},{"authorName":"马辉","id":"d17269d5-1f5a-4f8d-b69e-53514078df56","originalAuthorName":"马辉"},{"authorName":"张永康","id":"751def8c-13bf-46df-987e-06f4bc8f1c69","originalAuthorName":"张永康"},{"authorName":"陈康敏","id":"16c27e6b-d01f-4355-9601-827deeff0e29","originalAuthorName":"陈康敏"},{"authorName":"任旭东","id":"ce9d592f-c4de-415e-8627-1bda542f02e6","originalAuthorName":"任旭东"},{"authorName":"罗开玉","id":"23977c0b-b09e-4fcc-8f8b-22bf9c6d7791","originalAuthorName":"罗开玉"}],"doi":"","fpage":"8","id":"98af73bb-9c59-4c9d-bee9-8dc9d006b2ae","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"4f627129-b5eb-4e3d-9d12-5d93a7a1c59c","keyword":"激光冲击处理","originalKeyword":"激光冲击处理"},{"id":"94fe3edd-ec53-4700-9642-da089f27b288","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"80fc8a20-8817-445f-9bbe-8cb79ff273f9","keyword":"空位","originalKeyword":"空位"},{"id":"223c8691-527d-4886-849d-badc86733b3c","keyword":"材料微结构","originalKeyword":"材料微结构"},{"id":"419e8e80-205e-4179-8b67-fada5f307b1f","keyword":"诱导","originalKeyword":"诱导"},{"id":"9213001f-62a3-4d26-ad69-c894894e5335","keyword":"高应变率","originalKeyword":"高应变率"},{"id":"ccb5a670-4544-49bb-b71c-237be770b06b","keyword":"YAG激光","originalKeyword":"YAG激光"},{"id":"7b0eeeea-a514-48f2-af71-f7cec594a3fb","keyword":"残余压应力","originalKeyword":"残余压应力"}],"language":"zh","publisherId":"jsrclxb201201002","title":"强激光冲击诱导铝合金中的空位现象分析","volume":"33","year":"2012"},{"abstractinfo":"用工业纯Al(α-Al)和Al-Cu-Mg系航空铝合金2A02进行了激光冲击表面改性实验,借助TEM从微结构响应的位错机制研究了不同靶材对强化效果的影响.结果表明,2种材料的强化效果有显著差异.α-Al激光冲击强化机制可归因于位错增殖.随激光冲击次数增加,新生位错发生塞积,并与林位错发生交互作用,位错线逐步演变为曲折波形、位错网络和位错缠结,但其硬度曲线因Bauschinger效应(BE)和应力波阻尼而呈线性快速衰退.铝合金2A02的激光冲击强化机制可归结为,由于高的基体强度和弥散析出相的钉扎作用而增强位错的弹性能与激光冲击超高能量的匹配,以及冲击诱发的位错增殖在析出相之间形成的复杂位错网络.随激光冲击次数增加,基体与析出相之间以增强的半共格关系协调形变;位错增殖和空位运动构成几何必须位错界面(GNBs),由其构成的亚晶界将基体金属细化至纳米级.复杂位错组态所致内应力和纳米化作用共同构成铝合金材料激光冲击表面改性的强化机理.","authors":[{"authorName":"罗新民","id":"aec6d64e-82e1-434c-86c4-329b501c11b3","originalAuthorName":"罗新民"},{"authorName":"陈康敏","id":"bf61be72-6b5f-4d59-928e-688c831850b5","originalAuthorName":"陈康敏"},{"authorName":"张静文","id":"fca9603e-80ff-43f3-a5ef-88d39fbbb7ee","originalAuthorName":"张静文"},{"authorName":"鲁金忠","id":"3352c2b1-daa4-495c-84ad-19ec502c4bea","originalAuthorName":"鲁金忠"},{"authorName":"任旭东","id":"33d828c9-ee6b-449d-9b9e-2e5bd502e65b","originalAuthorName":"任旭东"},{"authorName":"罗开玉","id":"a4b96c1e-58b3-4e7e-90da-8a2eb8c1cf8a","originalAuthorName":"罗开玉"},{"authorName":"张永康","id":"2995b2e6-72ef-453a-9bca-96355588ae42","originalAuthorName":"张永康"}],"doi":"10.3724/SP.J.1037.2013.00035","fpage":"667","id":"133d573d-7cd6-4d8b-b5fd-d02f3846308d","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"74f06ef9-e392-443c-b46a-5b2988fe0992","keyword":"工业纯Al(α-Al)","originalKeyword":"工业纯Al(α-Al)"},{"id":"7bd32024-723d-4b57-b5db-874d9d64fc20","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"ac4cbe76-07d7-40ac-bdec-262ee12643aa","keyword":"激光冲击","originalKeyword":"激光冲击"},{"id":"3062f68c-1ba1-4bd7-af9d-b7eb3561b7b5","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"d040d3ae-e11d-4b6a-8404-27a60e72981a","keyword":"位错","originalKeyword":"位错"},{"id":"6555749a-c008-41af-9387-e3f7f83d4f1d","keyword":"微结构","originalKeyword":"微结构"}],"language":"zh","publisherId":"jsxb201306004","title":"纯Al和铝合金激光冲击表面改性的位错机制","volume":"49","year":"2013"},{"abstractinfo":"利用CO2激光器对QT600球墨铸铁进行了激光淬火处理试验,用X-350A型X射线应力仪测定QT600激光淬火后的表面及其断面残余应力规律,分析了QT600激光淬火后的残余应力形成机理.试验结果表明,在CO2激光工艺参数为输出功率P=800-1200W、光斑直径φ=3.5-4.0mm、扫描速度V=6-8mm/s的条件下,QT600激光淬火后的残余应力均为压应力,其值在-250MPa以上.在QT600材料表面及断面上测定了Ψ=0°、45°和90°方向上的残余应力,其值的变化范围小,表明淬火后材料组织结构比较均匀,无明显织构,有利于提高材料的使用寿命.","authors":[{"authorName":"冯爱新","id":"4adb68bd-cba2-4880-bd88-2dcb5119a9d7","originalAuthorName":"冯爱新"},{"authorName":"孔德军","id":"83811a07-8c12-4f48-b594-d4d122e00659","originalAuthorName":"孔德军"},{"authorName":"张永康","id":"facd63f6-e94b-449d-9a0d-6be8af0055bf","originalAuthorName":"张永康"},{"authorName":"鲁金忠","id":"c1d6a1b3-9a57-4875-a93e-9c62a5197f4a","originalAuthorName":"鲁金忠"},{"authorName":"葛涛","id":"9a22c7af-d0cf-43e6-afaa-764b7b7f01ec","originalAuthorName":"葛涛"},{"authorName":"任旭东","id":"1ab4f922-65e9-4c78-adf5-d0b9e998026e","originalAuthorName":"任旭东"}],"doi":"10.3969/j.issn.1009-6264.2006.02.020","fpage":"79","id":"2ab6e65d-c484-40e4-9fcf-8b9c0d06c650","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"9a93f189-67d0-4e6f-8a66-37097c778737","keyword":"QT600球墨铸铁","originalKeyword":"QT600球墨铸铁"},{"id":"6d95223f-cfd5-4b76-9443-5a505aa296f0","keyword":"残余应力","originalKeyword":"残余应力"},{"id":"4c9973d4-be8d-42dd-9d9c-bdcf00a0b613","keyword":"激光淬火","originalKeyword":"激光淬火"},{"id":"23efa6f3-85ad-4eb6-a7d7-998269e8e214","keyword":"X射线衍射","originalKeyword":"X射线衍射"}],"language":"zh","publisherId":"jsrclxb200602020","title":"QT600球墨铸铁激光淬火相变层残余应力测试研究","volume":"27","year":"2006"},{"abstractinfo":"用输出波长为1.054 μm、脉冲宽度为20 ns、光斑直径为7 mm的调Q钕玻璃激光,对TA2工业纯钛板料进行了激光冲击,用热场发射扫描电镜观察分析了激光冲击后钛板的微结构及其形貌.结果表明:激光冲击作用于钛板表面的等离子爆轰波能有效地对TA2工业纯钛板料实施形变,激光冲击后板材内部的微观形貌与冲击产生的应变类型有关.在压缩变形部位,微观组织以应变诱发马氏体为主.在拉伸变形部位,以形变孪晶带为主;激光冲击的超高能量和超高应变率可使hcp多晶金属晶体爆发大量薄片孪晶,从而调整晶粒内部的晶体取向,诱发滑移系开动,使形变得以进行.","authors":[{"authorName":"罗新民","id":"9f76a32d-7863-42b8-a0c0-db1de3bacf15","originalAuthorName":"罗新民"},{"authorName":"苑春智","id":"2f260ae2-0d38-440a-8b44-97e12bfd0cdb","originalAuthorName":"苑春智"},{"authorName":"任旭东","id":"16c1fa89-fd8c-4ca9-a9a4-c3405c3ac0aa","originalAuthorName":"任旭东"},{"authorName":"陈康敏","id":"69565562-07d8-489e-a9e6-36376f65159b","originalAuthorName":"陈康敏"},{"authorName":"张永康","id":"22b4143c-94a5-46ff-b435-73bd233684f0","originalAuthorName":"张永康"}],"doi":"","fpage":"116","id":"627ad43b-8e9d-4642-9497-fde3ee8406b2","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"7ac74608-2b33-4d11-aaf9-d81aaebd16ce","keyword":"激光冲击形变","originalKeyword":"激光冲击形变"},{"id":"760cd850-5d2c-4173-8ede-610ad3013b63","keyword":"超高应变率","originalKeyword":"超高应变率"},{"id":"d7cc6e59-3a6f-44a3-b727-1c09e7860cda","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"45726d75-5807-4c62-afc2-da7ed128b65c","keyword":"塑性变形","originalKeyword":"塑性变形"},{"id":"b121c330-a30d-4c7d-945b-710ae7d14087","keyword":"微结构","originalKeyword":"微结构"}],"language":"zh","publisherId":"jsrclxb201006023","title":"激光冲击超高应变率对钛板形变微结构的影响","volume":"31","year":"2010"},{"abstractinfo":"以日本掘场EMGA-820型氧氮分析仪为测量仪器,对惰气熔融-红外吸收法测定硫化钐中氧含量的测定结果的不确定度来源进行分析与评定.计算出各分量的不确定度.通过合成得到合成不确定度、扩展不确定度及测试结果的报告形式.结果表明校准时测量变动性对合成标准不确定度的影响最大.为该方法的应用及改进提供了依据.","authors":[{"authorName":"张翼明","id":"373515f4-c92b-4357-b705-4cea3b6ccb93","originalAuthorName":"张翼明"},{"authorName":"任旭东","id":"93cda900-6251-45ae-838e-c762736677de","originalAuthorName":"任旭东"},{"authorName":"郝茜","id":"55a68899-6e21-4608-a7a6-7cbd76a5340e","originalAuthorName":"郝茜"},{"authorName":"吴文琪","id":"810a2cf7-a8f2-492a-85bb-bf4a0c0885fc","originalAuthorName":"吴文琪"},{"authorName":"张术杰","id":"45678d56-34c5-4f03-813b-f82a87d0ee7f","originalAuthorName":"张术杰"},{"authorName":"蒋天怡","id":"fca93d1e-de58-4e7e-aa49-a60222be4682","originalAuthorName":"蒋天怡"}],"doi":"","fpage":"88","id":"a3344d73-2583-4246-b56e-ad1ce9a0835c","issue":"4","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"95ea50b2-0667-41cb-b3f7-9e41c3d49836","keyword":"惰气熔融-红外吸收法","originalKeyword":"惰气熔融-红外吸收法"},{"id":"e48ddb4f-10e0-4107-80f6-8fe57759451d","keyword":"不确定度","originalKeyword":"不确定度"},{"id":"62f78b8a-8508-4cc7-8874-507dd662a058","keyword":"硫化钐","originalKeyword":"硫化钐"},{"id":"01f518b7-04b6-456f-96e9-e9df01b35d60","keyword":"氧含量","originalKeyword":"氧含量"}],"language":"zh","publisherId":"xitu201404017","title":"惰气熔融-红外吸收法测定硫化钐中氧的不确定度评价","volume":"35","year":"2014"},{"abstractinfo":"通过对钛合金Ti6Al4V的激光冲击处理,研究了激光冲击处理工艺对钛合金Ti6Al4V力学性能的影响.实验表明:激光冲击处理能有效提升Ti6Al4V的力学性能,在激光功率密度由1.15GW/cm2增加到2.31GW/cm2过程中,其冲击波峰值压力线性增加,表面最大残余压应力也相应增大,最高达-264MPa,表面硬化层的显微硬度高达510Hv,硬化层深度约为0.25mm,经过激光冲击处理后硬度相对于原始钛板提高了64%,随着激光能量的增加,冲击区域的抗拉强度极大增强,塑性降低.","authors":[{"authorName":"任旭东","id":"1264c3b3-46a0-4430-ae0e-422e9297560c","originalAuthorName":"任旭东"},{"authorName":"张永康","id":"301a0f9f-8e76-4e8b-b299-98291d890721","originalAuthorName":"张永康"},{"authorName":"周建忠","id":"adc435a8-734a-4c23-89a1-528bdadf94e8","originalAuthorName":"周建忠"},{"authorName":"冯爱新","id":"ec98c18c-51be-4cff-971f-d29cb0fccf97","originalAuthorName":"冯爱新"},{"authorName":"鲁金忠","id":"374b0447-6b32-4d40-ac1c-d71e82a5e32b","originalAuthorName":"鲁金忠"}],"doi":"","fpage":"1781","id":"bfe5812c-4629-4434-8ae4-2269322ad639","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"02d0d244-1afe-47cc-8d0d-55c4789ae066","keyword":"钛合金Ti6Al4V","originalKeyword":"钛合金Ti6Al4V"},{"id":"dc390c1d-25d6-43d0-8d78-8520ae350ad8","keyword":"激光冲击","originalKeyword":"激光冲击"},{"id":"dbd67f6b-01ef-4fb4-9af0-671a0e1286c6","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gncl200611029","title":"激光冲击处理对Ti6Al4V力学性能的影响","volume":"37","year":"2006"},{"abstractinfo":"用激光激波强化工艺对LY2航空铝合金进行了表面强化试验研究,测试了强化前后材料的性能.结果表明:经激光激波强化后材料表面残余压应力提高了约100 MPa,强化深度达1.5mm,是普通喷丸强化的2~5倍.","authors":[{"authorName":"马壮","id":"044a02d5-423a-4c48-92f3-48e9070c39c7","originalAuthorName":"马壮"},{"authorName":"李应红","id":"38f10bc9-9514-49e8-ade8-d14c3d03a32b","originalAuthorName":"李应红"},{"authorName":"任旭东","id":"56914dc8-31dc-4a64-8d83-1fca14f08df1","originalAuthorName":"任旭东"},{"authorName":"周磊","id":"7f1297ab-8cff-4653-9b7e-2b79fa4f2884","originalAuthorName":"周磊"}],"doi":"10.3969/j.issn.1000-3738.2007.08.010","fpage":"32","id":"c7a2ffa2-58d5-4160-bc33-6dd195d26a53","issue":"8","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"004b4546-ef4f-465b-b112-f209b1513a2b","keyword":"航空铝合金","originalKeyword":"航空铝合金"},{"id":"7fc994f2-de65-4f77-90c3-786d1cb4213c","keyword":"激光激波","originalKeyword":"激光激波"},{"id":"73b6f124-2ffd-4959-ae83-f3f79f583346","keyword":"强化","originalKeyword":"强化"},{"id":"b5b769d0-82c2-49bf-9400-a169a426392a","keyword":"残余应力","originalKeyword":"残余应力"}],"language":"zh","publisherId":"jxgccl200708010","title":"航空铝合金激光激波强化工艺","volume":"31","year":"2007"},{"abstractinfo":"选用不同涂层对304不锈钢板材激光冲击处理,研究了自主研制的硅酸乙脂涂层与几种常用吸收涂层对304不锈钢的硬度和表面残余应力等冲击力学性能的影响.结果表明,在激光冲击过程中,黑漆涂层、铝箔涂层和硅酸乙脂黑漆涂层都能有效提高激光冲击试样的表面硬度,激光连续冲击后,在304不锈钢试件表面能形成1mm厚的硬化层,其表面硬度最大到240HV;随着激光功率密度的增强,其表面硬度逐渐增强;其表面残余应力也随着激光功率密度的增加而逐渐增大.","authors":[{"authorName":"马壮","id":"6e037f7f-8cef-4713-ad21-c1ff0c6f7b46","originalAuthorName":"马壮"},{"authorName":"李应红","id":"25c8b156-4f2f-4de7-a4ec-aa218139d227","originalAuthorName":"李应红"},{"authorName":"张永康","id":"c68d6cde-c978-41dd-a38f-ee05b59afc98","originalAuthorName":"张永康"},{"authorName":"任旭东","id":"e54ce93d-c596-4661-b070-f0a7890ae01a","originalAuthorName":"任旭东"},{"authorName":"张凌峰","id":"37e84343-1473-441c-bebe-4128ef0e20f6","originalAuthorName":"张凌峰"}],"doi":"10.3969/j.issn.1009-6264.2007.03.024","fpage":"102","id":"dbf7ac61-1ffa-4e3e-8bfb-4d044bbda360","issue":"3","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"aae98c2c-1625-47dd-b134-b464cd9bf61e","keyword":"激光冲击","originalKeyword":"激光冲击"},{"id":"6ecb4d70-663a-47f8-9bb7-c20d94cef4f8","keyword":"304不锈钢","originalKeyword":"304不锈钢"},{"id":"abb5aaff-d572-4e9f-9e4f-5a6396a5e27e","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsrclxb200703024","title":"激光冲击处理对304不锈钢力学性能的影响","volume":"28","year":"2007"},{"abstractinfo":"利用输出波长为1064 nm的钕玻璃YAG激光器,对2000系铝铜镁航空铝合金进行了激光冲击表面改性试验.用TEM和IFFT方法分析了位错及其运动在铝合金激光冲击表面改性中的作用.结果表明,激光冲击表面改性效果明显,可使表层硬度提高50%以上;残余压应力达到120MPa以上.激光冲击在基体中诱发大量位错,位错组态主要包括刃型位错、异号位错组和由位错偶构成的螺型位错等.合金中的析出相与基体中的应变位错保持半共格关系,增强了析出相颗粒的强化作用;激光冲击的超高应变率导致基体产生有序连续排列的同号位错形成位错墙,将基体分割为纳米级亚晶粒.激光冲击诱发的复杂位错组态是表层硬度和残余应力提高的内在原因.","authors":[{"authorName":"罗新民","id":"4442ce21-6fc0-424b-ae89-ac1dbbd1f0fc","originalAuthorName":"罗新民"},{"authorName":"王翔","id":"6b9d37f4-f37e-4df0-b2ae-7837703267d9","originalAuthorName":"王翔"},{"authorName":"陈康敏","id":"11e89ec9-c41e-4f04-9ff6-1d70f03221d8","originalAuthorName":"陈康敏"},{"authorName":"张永康","id":"bab42f11-c403-4a68-93a7-73ac07ac1657","originalAuthorName":"张永康"},{"authorName":"任旭东","id":"dd708720-b504-42bc-8fbe-063d7701a788","originalAuthorName":"任旭东"},{"authorName":"罗开玉","id":"67d3f116-7714-4a9c-a07e-6d3c9e357bd1","originalAuthorName":"罗开玉"}],"doi":"","fpage":"160","id":"eec0b5c7-2253-4f08-9844-b4fe356ca303","issue":"9","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"fbe80059-e306-418c-957c-df8dfa2fc19c","keyword":"航空铝合金","originalKeyword":"航空铝合金"},{"id":"29c51a8f-d0ea-4d2a-8496-20d601894f27","keyword":"激光冲击","originalKeyword":"激光冲击"},{"id":"26eeb845-3e39-4b6d-aa9d-add1e70fccab","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"1211b1d7-3de7-4f53-8984-5e09c0b184cd","keyword":"微结构","originalKeyword":"微结构"},{"id":"02764fd7-eea3-4091-8630-aec9cb7e66df","keyword":"位错","originalKeyword":"位错"}],"language":"zh","publisherId":"jsrclxb201309030","title":"位错及其运动在航空铝合金激光冲击表面改性中的作用","volume":"34","year":"2013"},{"abstractinfo":"使用Nd3+:YAG脉冲激光器产生的脉冲能量为12.5J,频率10 Hz,波长1064 nm的脉冲激光研究了强激光冲击下的Ti-6Al-4V合金表面响应,用SEM和TEM及IFFT方法分析了激光冲击强化造成的微结构响应.结果表明,激光冲击可使Ti-6Al-4V合金表面硬度增加80%以上,残余压应力达到500 MPa以上.在激光冲击产生的超高能量和超高应变率作用下,具有α/β两相结构的Ti-6Al-4V合金的激光冲击强化效应表现出明显的择优倾向,在较低冲击能量下,β相优先获得形变强化;在较高的冲击能量下,α和β相才能同时获得相当的形变强化,且优先强化相出现过饱和强化现象.位错增殖是冲击强化的主要微观机制,增殖形式多为定向发射和位错偶极子,α和β相则以半共格方式协调形变;在冲击强化区域内呈现应变屏蔽现象,其源于形变缺陷的自组织,是材料在激光冲击形变时的微观约束条件和激光冲击单点累积形变方式以及Q/β两相的相间强度与结构差异共同作用所致.","authors":[{"authorName":"罗新民","id":"3caf83df-e7a6-4115-ad94-af55483374c8","originalAuthorName":"罗新民"},{"authorName":"赵广志","id":"b7514d26-1fb3-4745-bd16-610fe6cc1db9","originalAuthorName":"赵广志"},{"authorName":"张永康","id":"856dc71e-985b-48dd-bba5-121f2ef9e84b","originalAuthorName":"张永康"},{"authorName":"陈康敏","id":"a65ba493-4fe3-4cff-af6f-0cfb12a6457e","originalAuthorName":"陈康敏"},{"authorName":"罗开玉","id":"65832268-d5ca-427d-af66-0a05cfa2f230","originalAuthorName":"罗开玉"},{"authorName":"任旭东","id":"28c69161-9d39-41b3-aafc-d578003cd007","originalAuthorName":"任旭东"}],"doi":"10.3724/SP.J.1037.2012.00081","fpage":"1116","id":"4197118a-b270-4d88-b0ce-10a7768fd2b9","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"57b12654-fb25-4505-a893-6e034a4904b5","keyword":"激光冲击","originalKeyword":"激光冲击"},{"id":"6602242f-a1ff-4f47-b6db-628880840bc5","keyword":"材料响应","originalKeyword":"材料响应"},{"id":"90258dc9-0951-44ca-8b45-72aef01f3d22","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"6e14d33a-b850-4169-b7a5-16329b94ea36","keyword":"表面强化","originalKeyword":"表面强化"},{"id":"1efe04ac-7261-4663-a61a-5111092f59ec","keyword":"微结构","originalKeyword":"微结构"}],"language":"zh","publisherId":"jsxb201209013","title":"Ti-6Al-4V激光冲击强化及其微结构响应分析","volume":"48","year":"2012"}],"totalpage":25,"totalrecord":246}