{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"冻融是造成混凝土内部损伤的重要因素之一,目前越来越多的研究学者使用残余应变来表征由冻融引起的混凝土内部损伤程度.本文通过作图分析残余应变的变化规律,建立了残余应变变化规律演化方程,并对该演化方程及其参数进行了分析和准确性验证.结果显示,混凝土的残余应变随着冻融循环的进行而逐渐增大,残余应变变化规律演化方程能够反映其变化规律;该演化方程可分为单段变化模式和双段变化模式,双段变化模式比单段变化模式更符合冻融损伤的机理;利用该演化方程计算的混凝土各冻融阶段的残余应变计算值和实测值之间具有较高的吻合度,对建立混凝土冻融损伤寿命预测模型具有一定的指导意义.","authors":[{"authorName":"杜鹏","id":"f0273a5f-69c0-4ee9-9784-13a037f8c5fa","originalAuthorName":"杜鹏"},{"authorName":"姚燕","id":"8769029d-b293-4e4a-b1bb-251198d681f3","originalAuthorName":"姚燕"},{"authorName":"王玲","id":"1ec1ec33-2f86-40af-8308-5fc175a2bb65","originalAuthorName":"王玲"},{"authorName":"王阵地","id":"935b56f1-67ea-4e35-b37d-c7dc9c020050","originalAuthorName":"王阵地"},{"authorName":"曹银","id":"6dd7a377-7fa2-444c-86e4-cc8fa8fb1563","originalAuthorName":"曹银"}],"doi":"","fpage":"540","id":"67e2328d-e4fb-488b-b5da-9aec35f20b40","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"22763521-9a02-4201-82b2-62c4d693ae61","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"9bff2e45-9e3c-4071-8ef5-e2f7d51b2abc","keyword":"残余应变","originalKeyword":"残余应变"},{"id":"6b60a29c-63e8-4cad-bdc4-1d1674dff27a","keyword":"变化规律","originalKeyword":"变化规律"},{"id":"f74975be-6213-475d-a57e-52d01e001213","keyword":"演化方程","originalKeyword":"演化方程"}],"language":"zh","publisherId":"clkxygc201304014","title":"混凝土冻融损伤演化方程的初步建立","volume":"31","year":"2013"},{"abstractinfo":"定义了一个能反映形状记忆合金超弹性和形状记忆效应的概念:形状记忆因子.利用相变过程中自由能与马氏体体积分数之间的微分关系,推导了形状记忆因子演化方程.从细观力学角度建立了一个考虑马氏体择优取向过程的形状记忆合金三维本构模型.与功能相同的现有模型相比,该模型具有更简单的数学表述和清晰的物理意义.","authors":[{"authorName":"周博","id":"0b5f5f8d-b51d-4e40-86ff-3cb2c6032ef0","originalAuthorName":"周博"},{"authorName":"王振清","id":"bae4c8a1-5b64-4ad6-bb5a-f979980fc8c0","originalAuthorName":"王振清"},{"authorName":"梁文彦","id":"9aada74c-09dc-434a-b0c7-a8f2008d3def","originalAuthorName":"梁文彦"}],"doi":"10.3321/j.issn:0412-1961.2006.09.005","fpage":"919","id":"b72dc65a-64a3-400b-b27f-b0b5843647c0","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"b9d3fe9a-bada-4baa-9372-2bd456642fe7","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"28c6ff11-1250-400c-8433-622814fb79a4","keyword":"形状记忆因子","originalKeyword":"形状记忆因子"},{"id":"13739419-e90d-4603-8438-85b2ab003434","keyword":"演化方程","originalKeyword":"演化方程"},{"id":"302238d1-4b90-4f3f-882b-711872c6afaf","keyword":"本构模型","originalKeyword":"本构模型"}],"language":"zh","publisherId":"jsxb200609005","title":"形状记忆合金的细观力学本构模型","volume":"42","year":"2006"},{"abstractinfo":"非线性Poisson方程在化学、化工及生物等领域有着广泛的应用.本文发展了一种基于格子演化的新算法-格子Poisson方法(LPM),并且给出了Dirichlet边界条件和Neumann边界条件的实现方法.本方法不需要对方程进行线化处理,直接求解非线性方程,适用范围广泛.Dirichlet边界与Neumann边界的数值模拟结果与多重网格法等结果符合很好,验证了该方法在求解非线性Poisson方程的正确性与有效性.本方法非常适合并行计算,并方便扩展到三维情况.","authors":[{"authorName":"王金库","id":"67a86705-129d-4f10-b771-fcc55351d3be","originalAuthorName":"王金库"},{"authorName":"王沫然","id":"44dfb8ef-3db1-4890-927f-227760817f7e","originalAuthorName":"王沫然"},{"authorName":"李志信","id":"301d6df2-b92d-463f-8e2f-42c20a9626e1","originalAuthorName":"李志信"}],"doi":"","fpage":"316","id":"2bd7dd16-b9f0-4290-8e08-9d8b3831190a","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ce52a743-5156-45b0-9249-8d2b3a29d02e","keyword":"非线性Poisson方程","originalKeyword":"非线性Poisson方程"},{"id":"96f2d185-beb4-4b5b-a7c1-b6a63f69ec2f","keyword":"格子Poisson方法","originalKeyword":"格子Poisson方法"},{"id":"f9ce7202-01cb-4fb9-adbc-c61a4b6e1b66","keyword":"格子Boltzmann方法","originalKeyword":"格子Boltzmann方法"},{"id":"281b0056-6e20-4369-a56a-667a8e972d03","keyword":"格子演化","originalKeyword":"格子演化"}],"language":"zh","publisherId":"gcrwlxb200602044","title":"求解非线性Poisson方程的格子演化算法","volume":"27","year":"2006"},{"abstractinfo":"基于辅助方程提出一种求解非线性演化方程的新方法,该方法简单易行且具有一定的普适性,根据不同的参数可给出各种形式的精确解,从而有助于探索非线性方程的新解及其性质.并以mKdV方程为例,得到了其多组精确解,包括Jacobi椭圆函数解及Weierstrass椭圆函数解等,除涵盖了以往结果,还给出一些新解.","authors":[{"authorName":"邱春","id":"280d110f-e441-454a-ab29-35cf0ea313ca","originalAuthorName":"邱春"},{"authorName":"刁明军","id":"cfee6dbd-550b-4897-9d77-83725e546513","originalAuthorName":"刁明军"},{"authorName":"徐兰兰","id":"be1d7a3e-5610-4842-aa92-ed2863800b21","originalAuthorName":"徐兰兰"},{"authorName":"岳书波","id":"0e6ed48b-21d3-48d8-a23e-fbf38c2724bd","originalAuthorName":"岳书波"},{"authorName":"赵静","id":"1db4cb64-8ba0-45a9-855c-b512cc4f6af7","originalAuthorName":"赵静"}],"doi":"10.3969/j.issn.1007-5461.2012.03.004","fpage":"279","id":"5775b535-6f5c-4bc9-aa52-624d68401702","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"73993ad6-c9d9-4cee-8859-86fa338a1f4b","keyword":"非线性方程","originalKeyword":"非线性方程"},{"id":"8638137f-596f-4465-87da-503eb979897b","keyword":"精确解","originalKeyword":"精确解"},{"id":"ba86ce79-be12-4b1a-84ab-4106b17e0d51","keyword":"辅助方程","originalKeyword":"辅助方程"},{"id":"bb5ddc31-a292-4ce8-b1b0-48d3e708890e","keyword":"mKdV方程","originalKeyword":"mKdV方程"}],"language":"zh","publisherId":"lzdzxb201203004","title":"构造非线性演化方程精确解的一个新方法","volume":"29","year":"2012"},{"abstractinfo":"应用试探函数方法求解了mBBM方程和Vakhnenko方程.通过引入试探函数,把难于求解的非线性偏微分方程化为易于求解的代数方程,然后用待定系数法确定相应的常数,从而简洁地求得方程的精确解.","authors":[{"authorName":"郭鹏","id":"e3620e9b-9d41-4658-98e0-e8f67a17f443","originalAuthorName":"郭鹏"},{"authorName":"张磊","id":"dd2eff69-3781-4cc8-95a7-d95cc103b443","originalAuthorName":"张磊"},{"authorName":"王小云","id":"97ce3ebc-db59-4ae4-afac-176e33b063db","originalAuthorName":"王小云"},{"authorName":"孙小伟","id":"a23eaadc-2208-4cbc-80ac-b068f2720556","originalAuthorName":"孙小伟"}],"doi":"10.3969/j.issn.1007-5461.2010.06.008","fpage":"683","id":"781e9623-e4c2-4078-9af7-4f981f7bcc79","issue":"6","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"770c8e64-f723-452f-92a3-8e225d943e43","keyword":"非线性方程","originalKeyword":"非线性方程"},{"id":"dcb6ea8d-b14a-4b5f-b488-332e3280124c","keyword":"试探函数方法","originalKeyword":"试探函数方法"},{"id":"eb88e65e-216b-4a5e-a0f4-8de2c76ce4ea","keyword":"mBBM方程","originalKeyword":"mBBM方程"},{"id":"1ca11a26-a4f6-4325-b6cc-f23936ad8780","keyword":"Vlakhnenko方程","originalKeyword":"Vlakhnenko方程"},{"id":"e04ab5da-6d14-46c8-b795-b4122499847a","keyword":"精确解","originalKeyword":"精确解"}],"language":"zh","publisherId":"lzdzxb201006008","title":"mBBM方程和Vakhnenko方程的显式精确解","volume":"27","year":"2010"},{"abstractinfo":"在广泛收集实验数据和理论关联式的基础上,提出了低温流体3He的宽温区、高精度熔化压力方程.该方程采用国际标准单位制,首次以统一而非分段的形式描述了3He在0.001 K~30 K宽温区熔化压力与温度的关系,方程计算值相对于406个实验数据点的最大和平均偏差分别为3.02%和0.106%.计算表明,该方程在0.31586 K时存在最小压力2.93113 MPa,这一结论与以往的实验和理论研究非常吻合.","authors":[{"authorName":"黄永华","id":"50efade4-7245-4dd5-8d4e-68002065620e","originalAuthorName":"黄永华"},{"authorName":"陈国邦","id":"df25d9dc-93f0-4205-adc3-b875db3d2c30","originalAuthorName":"陈国邦"}],"doi":"","fpage":"562","id":"dcd51186-0ab0-4104-b73d-e752d019499f","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"99dd23c2-d5f0-4e72-9d91-a699521b774b","keyword":"氦-3","originalKeyword":"氦-3"},{"id":"0a6c68c2-bfc6-4d9f-9ac7-bd31e030cd3e","keyword":"熔化压力","originalKeyword":"熔化压力"},{"id":"fa5f4a19-fa38-4a1a-be6c-791dcbee70b7","keyword":"状态方程","originalKeyword":"状态方程"}],"language":"zh","publisherId":"gcrwlxb200604007","title":"氦-3熔化压力方程","volume":"27","year":"2006"},{"abstractinfo":"为研究钢纤维混凝土材料的损伤演化过程,通过WEIBULL概率分布估计了钢纤维混凝土材料的强度分布.利用钢纤维混凝土材料强度分布与损伤变量的关系,推导出了钢纤维混凝土材料的损伤演化方程,并利用线性拟合的方法来计算损伤演化方程的参数.最后利用试验数据推导了素混凝土与钢纤维混凝土的损伤演化方程.经比较,对应于相同的损伤变量,体积含量1%的钢纤维混凝土抗压强度比素混凝土增加14.7%,而体积含量3%的则提高40%.","authors":[{"authorName":"龙源","id":"f4657b85-8448-4bea-84cd-d19005252b8d","originalAuthorName":"龙源"},{"authorName":"万文乾","id":"0bd13bfd-c146-48e7-bd01-fa36508c4ffb","originalAuthorName":"万文乾"},{"authorName":"纪冲","id":"c66f9b5c-429b-45d7-ab55-fc602663420b","originalAuthorName":"纪冲"},{"authorName":"周翔","id":"7b0d4d3b-4f42-4944-8374-549fc60b8807","originalAuthorName":"周翔"},{"authorName":"唐献述","id":"e14ec405-e43f-4c4a-9618-879b55045809","originalAuthorName":"唐献述"}],"doi":"10.3969/j.issn.1673-2812.2007.06.006","fpage":"830","id":"eea698f0-e842-4647-a404-d5c0fa10ee72","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"3689e6ac-6e24-4e07-8446-e22aea04489b","keyword":"损伤演化","originalKeyword":"损伤演化"},{"id":"f5514d04-2e0c-41f1-8208-f8d3295e8179","keyword":"钢纤维体积含量","originalKeyword":"钢纤维体积含量"},{"id":"ee0bc379-bb46-4164-97ed-53451d401a03","keyword":"WEIBULL概率分布","originalKeyword":"WEIBULL概率分布"}],"language":"zh","publisherId":"clkxygc200706006","title":"基于WEIBULL概率分布的钢纤维混凝土材料损伤演化分析","volume":"25","year":"2007"},{"abstractinfo":"采用二维相场模型模拟陶瓷烧结过程中颗粒间孔隙的演化过程.选取四方堆积颗粒间气孔作为对象.通过连续的密度场和长程取向场(LRO)描述烧结体的微结构,密度场的演化由Cahn-Hillard(CH)方程控制,而颗粒的取向场演化由时间相关的Ginzburg-Laudau(TDGL)方程控制.上述非线性演化方程利用半隐傅立叶频域法求解.模拟结果反映了颗粒间接触,烧结颈生长和气孔球化的微观过程.量化计算烧结颈生长率以及在不同晶界和表面迁移率比值时的烧结率,较好地符合理论分析的趋势.","authors":[{"authorName":"景晓宁","id":"ff4b9563-a43d-44c8-b59b-a9947e16baae","originalAuthorName":"景晓宁"},{"authorName":"倪勇","id":"188160fb-5813-4767-bf93-48faf93e4a7a","originalAuthorName":"倪勇"},{"authorName":"何陵辉","id":"b7b480bc-a4be-46ee-91e6-f198ff7ed828","originalAuthorName":"何陵辉"},{"authorName":"赵建华","id":"f13ddf89-2c6f-448b-abfc-471861134a90","originalAuthorName":"赵建华"}],"doi":"10.3321/j.issn:1000-324X.2002.05.030","fpage":"1078","id":"a8d0ac31-a536-4665-9d4d-a6d8767a4702","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"1bcd3683-46d9-4ea8-a0e2-979c3b6594ce","keyword":"陶瓷烧结","originalKeyword":"陶瓷烧结"},{"id":"541a2a20-c8ea-4146-aabc-a0a73d289e1d","keyword":"孔隙的微结构演化","originalKeyword":"孔隙的微结构演化"},{"id":"4cae967b-3deb-4df9-b44b-ead0d68fb823","keyword":"相场模型","originalKeyword":"相场模型"}],"language":"zh","publisherId":"wjclxb200205030","title":"陶瓷烧结过程孔隙演化的二维相场模拟","volume":"17","year":"2002"},{"abstractinfo":"针对激光诱导氧气火花的演化过程,建立了二维轴对称、非定常、多组分计算模型,在流体力学基本方程组的基础上考虑化学反应动力学,并用Fluent软件进行求解,得到了氧气火花在不同时刻的压力和温度分布,分析了氧气火花演化过程中流动传热过程的一些特点,并拟合得到了冲击波半径随时间的变化关系.通过计算结果与文献结果对比,进一步阐明了激光诱导氧气火花演化过程的动理学机理,为激光诱导气体火花点火的应用奠定了基础.","authors":[{"authorName":"陈克强","id":"773f77c2-e200-4b8a-8179-fa449b5e21e9","originalAuthorName":"陈克强"},{"authorName":"张小波","id":"7b98baa2-95bd-407d-bddf-23b5fca88a1e","originalAuthorName":"张小波"},{"authorName":"刘继平","id":"8eaa2e31-492c-4a5e-94ca-3765173cf93d","originalAuthorName":"刘继平"},{"authorName":"严俊杰","id":"024290d6-b8a7-4192-8f6f-2298eb5165bf","originalAuthorName":"严俊杰"}],"doi":"","fpage":"646","id":"1cf294a3-700b-4bd7-9ddc-861f684cef40","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"38909a25-58f7-4147-86d0-fb1c6a3dc0db","keyword":"激光","originalKeyword":"激光"},{"id":"505879b1-fe47-41d2-9c5a-762fffec5f36","keyword":"氧气等离子体","originalKeyword":"氧气等离子体"},{"id":"52617a50-79ae-496e-902e-eb9a5320f20c","keyword":"火花点火","originalKeyword":"火花点火"},{"id":"a3841615-b6c0-42cb-9fe4-12721a5cfad3","keyword":"数值计算","originalKeyword":"数值计算"}],"language":"zh","publisherId":"gcrwlxb201503041","title":"激光诱导氧气火花演化的数值计算","volume":"36","year":"2015"},{"abstractinfo":"利用改进的直接方法得到了一类Camassa-Holm方程的等价变换和对称群定理,建立了方程新解与旧解之间的关系,在已有的一些精确解的基础上利用对称群定理得到了Camassa-Holm方程的许多新的显式精确解.","authors":[{"authorName":"邱燕红","id":"7a66e277-9ea1-40eb-b962-8e324dde55b2","originalAuthorName":"邱燕红"},{"authorName":"田宝单","id":"8eb29c7d-d075-4d33-87a4-8a6e88fe5194","originalAuthorName":"田宝单"}],"doi":"10.3969/j.issn.1007-5461.2009.06.003","fpage":"654","id":"0623eb45-8cd1-427f-91af-a5e589563fbf","issue":"6","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"33bbee6c-ee29-4fcb-ab17-59dd5c0d501e","keyword":"非线性方程","originalKeyword":"非线性方程"},{"id":"d584dcfc-34bf-42f1-9c7a-cfc1a6fd03ae","keyword":"等价变换","originalKeyword":"等价变换"},{"id":"4c0d9b55-184f-4bfc-83f8-4e4d40eed43a","keyword":"直接方法","originalKeyword":"直接方法"},{"id":"bb0e3e44-a8a1-42c8-aa90-4106adab4695","keyword":"Camassa-Holm方程","originalKeyword":"Camassa-Holm方程"},{"id":"08803976-ce41-4dd3-94f2-4234ea0deb27","keyword":"精确解","originalKeyword":"精确解"}],"language":"zh","publisherId":"lzdzxb200906003","title":"Camassa-Holm方程的等价变换","volume":"26","year":"2009"}],"totalpage":696,"totalrecord":6957}