{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"锂盐是获得安全性能良好的锂离子二次电池的重要因素.聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注.文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响.总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望.","authors":[{"authorName":"梁波","id":"46074823-7ee3-430f-a912-be8444ba6398","originalAuthorName":"梁波"},{"authorName":"唐思绮","id":"bc9c5ba5-9281-42bd-902a-e27158b2bef3","originalAuthorName":"唐思绮"},{"authorName":"刘燕平","id":"305119a3-a6b4-4c62-b557-b5e14082e0a5","originalAuthorName":"刘燕平"},{"authorName":"欧阳陈志","id":"77a12b43-04c2-40f3-93fb-dbdee360de45","originalAuthorName":"欧阳陈志"}],"doi":"","fpage":"113","id":"dbeec014-7ba2-499d-821f-343d005fc432","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"eafadf68-ebb9-4565-a9a9-00d0967d4dec","keyword":"聚合物锂盐","originalKeyword":"聚合物锂盐"},{"id":"dbcdc644-0b8d-4907-8af3-d586616e108c","keyword":"锂离子迁移数","originalKeyword":"锂离子迁移数"},{"id":"1debb99c-f1d8-4633-b8db-c636b66e9a1a","keyword":"电导率","originalKeyword":"电导率"},{"id":"99e03299-e366-4c6b-86b4-4dfc79cdc035","keyword":"聚合物电解质","originalKeyword":"聚合物电解质"}],"language":"zh","publisherId":"gfzclkxygc201403025","title":"聚合物锂盐在锂离子电池电解质中的应用","volume":"30","year":"2014"},{"abstractinfo":"合成了低聚度烷氧磺酸锂盐(LiSA(EO)n)和对称星形醚(STEO)增塑剂,并制备了聚环氧乙烷(PEO)基聚合物电解质.研究了 PEO16+LiSA(EO)n体系的锂离子迁移数和电导率与锂盐结构的关系,实验结果表明,LiSA(EO)n代替LiClO4作为锂盐时,其电导率得到提高,而且聚合物电解质的锂离子迁移数随着烷氧磺酸锂盐阴离子体积的增大而增加,并且其中PEO16+LiSA(EO)2体系的锂离子迁移数达到0.35.STEO可明显地提高PEO16-LiSEO-STEO体系的电导率,PEO16-LiSAEO-20%STEO室温电导率可达到0.5×10-4S/cm.通过DSC实验结果表明,STEO的加入,可有效降低聚合物电解质体系的熔融温度和结晶度,PEO16-LiSAEO-20%STEO电化学稳定窗口在4.4 V以上,可满足锂电池的应用要求.","authors":[{"authorName":"古宁宇","id":"b3275648-44b2-44d1-a0e2-29e0868e9bf2","originalAuthorName":"古宁宇"},{"authorName":"余佃宝","id":"f3971db1-aa02-47d0-81eb-88b2f474c6cf","originalAuthorName":"余佃宝"},{"authorName":"谢媛媛","id":"155f1149-cb77-4238-83f5-b850e837e729","originalAuthorName":"谢媛媛"},{"authorName":"杨震宇","id":"75d90c78-eaa5-4890-85c8-98b1071202c6","originalAuthorName":"杨震宇"},{"authorName":"张荣斌","id":"fb79c9fa-edc9-4f72-ae1d-41c2bf91b91a","originalAuthorName":"张荣斌"},{"authorName":"刘峰","id":"5a6e9d0c-cf1a-4509-936d-7eda46532257","originalAuthorName":"刘峰"}],"doi":"10.3724/SP.J.1095.2011.00251","fpage":"48","id":"3fe9b791-4eec-460e-82cc-2f9f8e639693","issue":"1","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"24d406cb-2213-462e-90af-ed482b4ea147","keyword":"聚合物电解质","originalKeyword":"聚合物电解质"},{"id":"1fab2132-cb29-42e4-8704-4353adb65544","keyword":"磺酸锂盐","originalKeyword":"磺酸锂盐"},{"id":"4b2a92d8-83d4-4e29-ad1b-301f44d63194","keyword":"锂离子迁移数","originalKeyword":"锂离子迁移数"}],"language":"zh","publisherId":"yyhx201101009","title":"含烷氧磺酸锂盐及对称星形醚的聚环氧乙烷基聚合物电解质的制备及电化学性能","volume":"28","year":"2011"},{"abstractinfo":"本文利用Level Set方法,数值模拟了微重力情况下气泡/液滴的Marangoni迁移现象,分析了Marangoni数对迁移速度的影响.数值模拟结果表明,随着Marangoni数的增大,非线性热对流效应的影响会逐渐增大,导致沿相界面温度分布趋于均匀,从而降低迁移运动的驱动力,使气泡/液滴的迁移速度随Marangoni数的增加而逐渐减小.","authors":[{"authorName":"李震东","id":"4dc23b65-8dbd-4126-833a-4eff7d2efe2f","originalAuthorName":"李震东"},{"authorName":"赵建福","id":"be6e4276-a732-4e66-beef-628830516e66","originalAuthorName":"赵建福"},{"authorName":"秦文韬","id":"097113b5-902a-44f5-940b-b81a6f506a40","originalAuthorName":"秦文韬"}],"doi":"","fpage":"979","id":"d003a9bb-37af-4f55-854f-14c8a621d089","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"20ec8eba-504b-4fd5-a41c-1b8ca9a7866e","keyword":"Marangoni迁移","originalKeyword":"Marangoni迁移"},{"id":"ddf4969d-104d-41ca-bc48-4b67a41e7385","keyword":"气泡","originalKeyword":"气泡"},{"id":"73775ae6-0574-49c2-b314-6e137525e945","keyword":"液滴","originalKeyword":"液滴"},{"id":"8719f27e-dc5d-4050-8e2b-87ec421c2108","keyword":"Level Set方法","originalKeyword":"Level Set方法"}],"language":"zh","publisherId":"gcrwlxb201006020","title":"气泡/液滴Marangoni迁移数值模拟研究","volume":"31","year":"2010"},{"abstractinfo":"以导电聚合物作为电解质的塑料锂离子电池被认为是迄今锂电池发展最新水平,研制性能优良的聚合物电解质是生产该种锂离子电池的关键技术,因此对聚合物电解质的表征是必不可少的步骤.电导率、扩散系数、迁移数和电化学窗口是表征聚合物电解质的重要指标.文中介绍了塑料锂离子电池用聚合物电解质性能的表征方法,给出了交流阻抗、浓差极化、断电流、线性伏安扫描等实验方法,并对其作了分析和讨论.","authors":[{"authorName":"唐致远","id":"74f1b5ea-f5ee-40f9-a254-f56cc45d7088","originalAuthorName":"唐致远"},{"authorName":"王占良","id":"4c5155db-005c-462a-80e1-120855b7e4ad","originalAuthorName":"王占良"},{"authorName":"薛建军","id":"e959835b-ac1e-41f9-82c7-b574abc5f246","originalAuthorName":"薛建军"}],"doi":"","fpage":"33","id":"d86a82dc-b7c9-486a-a956-9770f74ecd42","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"57891924-cc39-49a9-92e0-e98c3bdaa884","keyword":"聚合物电解质","originalKeyword":"聚合物电解质"},{"id":"0e65f805-b56d-47aa-8504-69a4f1581907","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"e02fb5d7-ef8b-429c-aa47-d45866fced4b","keyword":"电化学方法","originalKeyword":"电化学方法"}],"language":"zh","publisherId":"gfzclkxygc200202007","title":"塑料锂离子电池用聚合物电解质性能表征","volume":"18","year":"2002"},{"abstractinfo":"用全氟醚作为增塑剂对PEO改性,并与双三氟甲烷磺酰亚胺锂复合,制备了全固态聚合物电解质.采用SEM、交流阻抗、稳态电流法及恒电流恒电压充放电等对固态聚合物电解质的性能进行了测试表征,结果表明:m(PFPE)∶m(PEO)=0.6的固态聚合物电解质膜的电导率30℃时为2.6×10-3 S· cm-1,同条件下电解质溶液电导为8.2×10-3 S· cm-1,二者处于同一个数量级;随PFPE的量增加,锂离子的迁移数增大;与液态电解质电池相比,固态聚合物电解质制成的电池具有更好的循环容量保持特性,固态聚合物电解质电池500次循环的容量保持率在88.1%,液态电解质电池循环容量保持率在64.5%左右;固态聚合电解质有很优异的耐高温安全性,在130℃和150℃下经1~2 h热箱试验,用固态聚合物电解质制作的锂离子电池没出现明显体积变化,而相同条件下的液态电解质锂离子电池已发生爆裂或起火.","authors":[{"authorName":"王洪","id":"178667cb-1cbb-4f6d-87be-85788f8a9490","originalAuthorName":"王洪"},{"authorName":"谢文峰","id":"020527f3-b39e-48ae-b560-a362eee9e931","originalAuthorName":"谢文峰"},{"authorName":"郭春泰","id":"669036a4-bbb3-4f4a-bc54-e759b64f263b","originalAuthorName":"郭春泰"}],"doi":"10.11896/j.issn.1005-023X.2016.08.007","fpage":"33","id":"161c8bf1-eeed-4c60-9baa-78fcfc233004","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1d3541d4-9acd-4db7-b162-f59c045c6c1b","keyword":"固态聚合物电解质","originalKeyword":"固态聚合物电解质"},{"id":"6d4c9e45-c3ef-47e1-8958-9f2ba9c3329e","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"49d2a4ec-0562-4b97-a5aa-67cb12d727f0","keyword":"PEO","originalKeyword":"PEO"},{"id":"2dbfb055-5c65-437b-ad46-391d20f120a2","keyword":"PFPE","originalKeyword":"PFPE"}],"language":"zh","publisherId":"cldb201608007","title":"用于锂离子电池的全固态聚合物电解质","volume":"30","year":"2016"},{"abstractinfo":"本文分2部分刊出,主要论述银镀层中银离子的迁移现象.在第1部分,通过SEM照片,论述了不同条件下所发生的银离子迁移的不同形态.研究了银离子迁移机理.讨论了电场、温度、湿度、基材和不纯物对银迁移方式的影响.","authors":[{"authorName":"嵇永康","id":"8ca369cd-451c-42ca-b4e5-a4f8ff349819","originalAuthorName":"嵇永康"},{"authorName":"胡培荣","id":"2540ceba-7957-462b-8a9d-e1f2eb9e214c","originalAuthorName":"胡培荣"},{"authorName":"卫中领","id":"33087d83-1b08-4578-877b-b1ad0b516c42","originalAuthorName":"卫中领"}],"doi":"","fpage":"18","id":"64baa19e-3d2e-49e9-a45b-a7db5a873c77","issue":"8","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"50500fcd-4c4d-4a5b-b541-e45e85faa8ed","keyword":"银离子迁移","originalKeyword":"银离子迁移"},{"id":"af20f9bb-c678-4161-9616-313ae76c4d92","keyword":"银镀层","originalKeyword":"银镀层"},{"id":"709a2861-e221-40b9-a3ec-bd6162e3865c","keyword":"扫描电子显微镜","originalKeyword":"扫描电子显微镜"},{"id":"927a5070-ffe4-4c9b-bd0d-c7368aae6f00","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"ddyts200808006","title":"银镀层中银离子的迁移现象(一)","volume":"27","year":"2008"},{"abstractinfo":"报道了自主研制的光电离-离子迁移谱装置的基本结构和性能.采用10.6 eV Kr灯为电离源,以苯为检测样品,对迁移电场电压、离子门电压和脉冲宽度参数进行优化,得到最佳装置参数为离子门脉冲宽度0.15 ms,离子门电压80 V,迁移区电压2153 V.使用指数稀释方法制备样品浓度,获得了离子迁移谱检测苯的标准曲线,对苯的检测限为400 ppt,检测线性动态范围跨越三个数量级.","authors":[{"authorName":"李虎","id":"dd7aa2d4-2035-45f3-95d2-fa4475d03100","originalAuthorName":"李虎"},{"authorName":"牛文琪","id":"554be934-4507-4e3b-b8c3-d7dc6a595fa4","originalAuthorName":"牛文琪"},{"authorName":"王鸿梅","id":"cc711320-4102-45d0-a0db-04d1d89a15d9","originalAuthorName":"王鸿梅"},{"authorName":"黄超群","id":"e95c4798-5866-4c58-a5e2-88609f495c8f","originalAuthorName":"黄超群"},{"authorName":"李建权","id":"4d9c44c0-b215-42df-8f12-a25eaf5d221e","originalAuthorName":"李建权"},{"authorName":"沈成银","id":"5c110d27-b639-4ef0-ac2f-14af846f1bcb","originalAuthorName":"沈成银"},{"authorName":"江海河","id":"103378d3-e7f7-4db0-933d-bb7dbe50518b","originalAuthorName":"江海河"},{"authorName":"储焰南","id":"2ee43b8a-4563-47ab-b857-492110422712","originalAuthorName":"储焰南"}],"doi":"10.3969/j.issn.1007-5461.2012.01.002","fpage":"8","id":"50372285-19be-4372-918d-20f6f9155c4c","issue":"1","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"a34cd45c-0c7e-4ac9-bdfd-a42f1148f7d9","keyword":"光谱","originalKeyword":"光谱"},{"id":"be6bcb0b-5342-4ec4-ac1e-7bef741e6830","keyword":"离子迁移谱","originalKeyword":"离子迁移谱"},{"id":"f3831101-26ea-4457-b8b3-3b3932723f9d","keyword":"光电离","originalKeyword":"光电离"},{"id":"2f1ff4c7-7e5b-4ef3-b733-656788c593de","keyword":"苯","originalKeyword":"苯"},{"id":"2fa9a545-95be-4e9e-92b6-4da395b6a57d","keyword":"分辨率","originalKeyword":"分辨率"}],"language":"zh","publisherId":"lzdzxb201201002","title":"光电离-离子迁移谱实验参数与性能研究","volume":"29","year":"2012"},{"abstractinfo":"对渣相中氧离子迁移的电化学进行研究, 提出具有电化学特征的渣相氧离子流动力学模型, 此模型能较为全面地解释各种反应现象, 实验数据与模型计算的对比, 证明所提出的反应机制的正确性.","authors":[{"authorName":"鲁雄刚","id":"19917b0f-5ce7-415b-88d1-c144a14d2716","originalAuthorName":"鲁雄刚"},{"authorName":"李福燊","id":"a9f3ce18-7c19-4c49-8124-e8ab44093d6b","originalAuthorName":"李福燊"},{"authorName":"李丽芬","id":"fcfca5f2-232c-4ced-8f83-a75019e57fb2","originalAuthorName":"李丽芬"},{"authorName":"周国治","id":"3ae2246c-10d4-4c7d-8b32-71583e378ea3","originalAuthorName":"周国治"}],"categoryName":"|","doi":"","fpage":"743","id":"3cb2752f-d2ca-4731-be5b-b24983e922bd","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"13e46d79-f565-4f62-ace6-54e5a7efd20a","keyword":"炉渣","originalKeyword":"炉渣"},{"id":"e8d2da07-f01c-4c5c-917b-04f5d7d2ab6b","keyword":"null","originalKeyword":"null"},{"id":"1eff9944-4708-4af9-8d15-1ceb9717d6c6","keyword":"null","originalKeyword":"null"},{"id":"db3a3c3f-7cf1-4688-92a0-10114ec8d1bc","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_1999_7_10","title":"炉渣中氧离子迁移的电化学模型","volume":"35","year":"1999"},{"abstractinfo":"分析了国内外锂离子电池的研究发展状况,系统评达了锂离子电池正负极材料的研究动向和最新进展,提出了作为新一代锂离子电池的正负极材料的研究方向.","authors":[{"authorName":"陈志国","id":"e427eb0e-a985-4ba5-9b1d-c54b5b5cec51","originalAuthorName":"陈志国"},{"authorName":"郑子樵","id":"8fd0d3ee-6bfe-4084-8383-bc86a6fa6c67","originalAuthorName":"郑子樵"}],"doi":"","fpage":"14","id":"7d9d153e-963a-48c6-a29e-a646758d7daf","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3e963b4d-d2ed-4447-adc7-0077d303dd66","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"163d0150-2fdc-439f-8a54-449ed52a57fa","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"ebf59b92-5b15-4d6b-85ea-650c49642324","keyword":"负极材料","originalKeyword":"负极材料"}],"language":"zh","publisherId":"cldb200009005","title":"锂离子电池正负极材料研究","volume":"14","year":"2000"},{"abstractinfo":"文章的第2部分论述了银镀层发生离子迁移的实验方法和检测方法.实验方法有环境实验法和溶液实验法;检测方法包括光学观察,绝缘电阻值测量,感应电特性,SEM观察,组成分析,放射化分析,软X射线观察,AFM观察和激光显微镜观察等.","authors":[{"authorName":"嵇永康","id":"de8c359e-6559-4613-b5a3-4af308cf2888","originalAuthorName":"嵇永康"},{"authorName":"胡培荣","id":"e6b7e27b-9b60-4039-b156-aaffe32ca6c3","originalAuthorName":"胡培荣"},{"authorName":"卫中领","id":"b4ec7e81-42b1-450c-9c67-4728eeb201eb","originalAuthorName":"卫中领"}],"doi":"","fpage":"19","id":"7b44d228-efcd-49fa-bf6f-c4839474e1c7","issue":"9","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"ad393568-edb8-43e6-b150-6077812befdd","keyword":"镀银","originalKeyword":"镀银"},{"id":"ac17f3d7-acf7-44e6-b6a3-da852165c52b","keyword":"银离子迁移","originalKeyword":"银离子迁移"},{"id":"cdee2cad-9337-45c1-8303-9f961bb72427","keyword":"实验方法","originalKeyword":"实验方法"},{"id":"7053b58c-3ec3-4be9-8a58-45cd779840f9","keyword":"检测方法","originalKeyword":"检测方法"}],"language":"zh","publisherId":"ddyts200809007","title":"银镀层中银离子的迁移现象(二)","volume":"27","year":"2008"}],"totalpage":2210,"totalrecord":22094}