{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"π配体催化剂与离子液体体系相结合有助于解决反应效率、产物分离和催化剂循环等一系列均相催化体系不易解决的难题. 近几年相关的研究逐渐深入,由简单地使用离子液体作为π配体催化反应的介质向利用离子液体自身结构的方向发展,相继出现了几类不同的研究思路. 例如,利用π配体催化剂与离子液体形成络合物,使用离子型π配体改善催化剂在离子液体中的溶解性,以及合成功能化阳离子或功能化阴离子的π配体离子液体. 本文结合这几类离子液体化学键联π配体(简称π配体离子液体)的研究进展,从离子液体功能化设计的角度探讨了π配体离子液体的合成思路,为设计具有更好催化性能的功能化离子液体体系提供借鉴.","authors":[{"authorName":"陶国宏","id":"6c9bb5aa-bdec-4c0f-b692-e3d968bfd92d","originalAuthorName":"陶国宏"},{"authorName":"陈知宇","id":"ce2b09c2-a579-408d-b9de-2715e8d53eb7","originalAuthorName":"陈知宇"},{"authorName":"何玲","id":"3fb242c7-afe9-45a5-9eb4-4b4af8d0550a","originalAuthorName":"何玲"},{"authorName":"寇元","id":"ae3b3227-0dad-4459-92ef-f14bed6df444","originalAuthorName":"寇元"}],"doi":"","fpage":"253","id":"8c5e920c-eb08-4955-bca0-cc55c5b29c60","issue":"3","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"8bb809e3-f58a-45eb-a0ee-ff93e7d1d008","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"acc17fd3-448b-4f38-90be-7e7886c1607c","keyword":"功能化","originalKeyword":"功能化"},{"id":"09716db4-6c46-4d80-a55f-8d0cdbdd00b6","keyword":"π配体","originalKeyword":"π配体"},{"id":"2159f0ea-2c6b-49d1-b805-ab57a4aebc7f","keyword":"π配体离子液体","originalKeyword":"π配体离子液体"},{"id":"a2d7b4b3-790d-4d35-a907-2849a3ece79d","keyword":"液液两相催化","originalKeyword":"液液两相催化"}],"language":"zh","publisherId":"cuihuaxb200503018","title":"设计新型液液两相催化体系:π配体离子液体","volume":"26","year":"2005"},{"abstractinfo":"无共氧化剂参与条件下,以氧气为氧化剂,在含膦或含氮配体功能化离子液体和普通离子液体(溶剂)组成的混合体系中,RuCl3·H2O能有效催化多种醇的选择氧化,高选择性地生成相应的醛或酮.其中,配位能力较弱的含氮配体功能化离子液体更有利于提高钌催化剂的活性和选择性,但体系无法有效实现钌催化剂的循环使用,配体功能化离子液体本身的氧化降解是导致钌催化剂失活的根本原因.","authors":[{"authorName":"周成亮","id":"2d42ff65-0dc8-4b31-ae7f-4428a1b3c0dd","originalAuthorName":"周成亮"},{"authorName":"刘晔","id":"30630ede-9b1c-47cf-b1a4-73de18885cef","originalAuthorName":"刘晔"}],"doi":"10.3724/SP.J.1088.2010.91122","fpage":"656","id":"752d4342-ed93-499b-80bf-f1e56952371b","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"8c916e17-66b1-43d5-8758-3a878992751d","keyword":"功能化离子液体","originalKeyword":"功能化离子液体"},{"id":"20674e37-89d6-4ee6-887e-d2c91514dd9b","keyword":"钌催化剂","originalKeyword":"钌催化剂"},{"id":"e61a488d-bd5d-436f-bf00-78a73f34a518","keyword":"配体","originalKeyword":"配体"},{"id":"4e420731-9526-4db0-a823-eb110d797ed3","keyword":"醇氧化","originalKeyword":"醇氧化"},{"id":"80fcf016-369f-4c8a-ae76-89e9a04c3a44","keyword":"分子氧","originalKeyword":"分子氧"}],"language":"zh","publisherId":"cuihuaxb201006010","title":"含膦和含氮配体功能化离子液体中RuCl3·3H2O催化分子氧氧化醇","volume":"31","year":"2010"},{"abstractinfo":"基于非手性离子液体对手性配体交换的促进作用,建立了一种测定去氧肾上腺素手性异构体的毛细管电泳分离分析方法。在系统优化了电泳条件后,采用20 kV的分离电压、25℃的毛细管柱温、254 nm的检测波长以及5 s的压力(3447 Pa)进样时间,在添加4.0 mmol/L Cu(Ⅱ)、8.0 mmol/L L-脯氨酸(L-Pro)和15 mmol/L 氯化-1-丁基-3-甲基咪唑([BMIM]Cl)的20 mmol/L Tris-H3PO4缓冲溶液(pH 5.4)中,R-去氧肾上腺素和 S-去氧肾上腺素的分离度为1.42,峰面积与质量浓度分别在12.5~150.0 mg/L 和15.0~150.0 mg/L 范围内有线性关系。将该方法用于加标血液和尿液样品中 R和 S型去氧肾上腺素的测定,尿液中的加标回收率为93.7%~108.2%,相对标准偏差在3.18%( n=3)以内;血液中的加标回收率为91.4%~113.1%,相对标准偏差在4.82%( n=3)以内。","authors":[{"authorName":"杨四梅","id":"1537a473-d32e-40d6-a10e-631f0096f46e","originalAuthorName":"杨四梅"},{"authorName":"张佳瑶","id":"fcf533e1-1d88-442b-81e7-9d6c7373c74e","originalAuthorName":"张佳瑶"},{"authorName":"李菲","id":"b0557354-21d5-4920-b988-c17f12263419","originalAuthorName":"李菲"},{"authorName":"胡旭芳","id":"0154307b-d8bd-4964-b3f7-0faccf39b162","originalAuthorName":"胡旭芳"},{"authorName":"曹秋娥","id":"431b8cbe-56b3-4397-8a5d-31e3555bb824","originalAuthorName":"曹秋娥"}],"doi":"10.3724/SP.J.1123.2015.10013","fpage":"103","id":"68d51d58-df21-46ac-8e42-5346c9f86392","issue":"1","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"6f0753f3-92f0-40fa-bad9-7a0e238ea806","keyword":"毛细管电泳","originalKeyword":"毛细管电泳"},{"id":"5985e065-3be9-4deb-a961-bd15c589e199","keyword":"手性配体交换","originalKeyword":"手性配体交换"},{"id":"3600c49e-086b-4e75-9e59-c1b8e6ecf20f","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"b01819a5-77d9-4a92-9a6c-5d8e2cdde579","keyword":"去氧肾上腺素","originalKeyword":"去氧肾上腺素"},{"id":"4c646e1f-e3a4-4629-a133-9bdb66a4f6a3","keyword":"光学异构体","originalKeyword":"光学异构体"},{"id":"04a3d500-a273-4a14-b6db-827896c9fa14","keyword":"手性分离","originalKeyword":"手性分离"}],"language":"zh","publisherId":"sp201601019","title":"基于离子液体促进的手性配体交换毛细管电泳法分离分析去氧肾上腺素光学异构体","volume":"","year":"2016"},{"abstractinfo":"离子液体是在室温下为液体、具有离子特性的新型溶剂,具有超低蒸气压,也称为绿色溶剂.通过选择合适的阳离子、阴离子和配体,可以调变离子液体的化学、物理性能.作为一种环境友好的反应介质,离子液体在纳米材料合成中的应用具有诱人前景.","authors":[{"authorName":"姜妲","id":"2ce19370-1db2-4d0b-8527-feae15cb6eca","originalAuthorName":"姜妲"},{"authorName":"尹振","id":"6bb232f8-348c-42f7-860c-ff1deecd4960","originalAuthorName":"尹振"},{"authorName":"翟玉春","id":"bea61fe1-c174-41a9-a8de-3b26d237043b","originalAuthorName":"翟玉春"}],"doi":"","fpage":"89","id":"8cfff9b5-a175-432d-a874-347f42d09a75","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"4930fbd6-0f60-42a5-8d3d-5b04c10058af","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"5a13fcd2-a444-4223-8839-46a04b0cd751","keyword":"溶剂","originalKeyword":"溶剂"},{"id":"bb059bab-762f-4e29-95c2-aedc9d27c9da","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"d9111ef8-5bf3-476f-b495-d617d368eaa0","keyword":"纳米材料","originalKeyword":"纳米材料"}],"language":"zh","publisherId":"cldb200605025","title":"离子液体及其研究进展","volume":"20","year":"2006"},{"abstractinfo":"离子液体是当前化学研究领域的一个热点,它在化学的各个领域都有研究和应用.该文就离子液体在毛细管电泳、气相色谱、高效液相色谱中的应用研究进展进行了较为详细的评述,对离子液体的分离检测作了简单的介绍,并对离子液体在色谱研究应用中的发展进行了展望.","authors":[{"authorName":"邱洪灯","id":"9718a085-c798-49a9-972e-6a491b791f55","originalAuthorName":"邱洪灯"},{"authorName":"胡云雁","id":"bfc50499-0774-4025-8dda-4f0c487c6629","originalAuthorName":"胡云雁"},{"authorName":"刘霞","id":"7a9a2f47-cad8-4a2f-bc6e-cd30a7b14683","originalAuthorName":"刘霞"},{"authorName":"蒋生祥","id":"d590c59e-2d42-47be-ad1d-23d7b72d822e","originalAuthorName":"蒋生祥"}],"doi":"10.3321/j.issn:1000-8713.2007.03.001","fpage":"293","id":"6fff736a-177a-45c9-a57b-56b5795e3bb9","issue":"3","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"3a20338b-b6d5-40ad-b1bc-a3dae890cdb5","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"c9173ced-027e-41f5-9f9e-b891dd632f49","keyword":"毛细管电泳","originalKeyword":"毛细管电泳"},{"id":"cbc8311c-50f3-47ed-a03c-35dd528bae9e","keyword":"气相色谱","originalKeyword":"气相色谱"},{"id":"95d9452d-5485-4b3d-8579-ad376b4bc49a","keyword":"液相色谱","originalKeyword":"液相色谱"},{"id":"09b42093-d9dd-4c6e-8e52-bcd161209b24","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"sp200703001","title":"离子液体在色谱中的应用","volume":"25","year":"2007"},{"abstractinfo":"为了提高离子液体体系中镀铝层的致密性、均匀性和金属光泽度,配制了尿素-NaBr-KBr-甲酰胺-AlCl3低温离子液体,在铜基体上电镀铝.采用SEM、XRD等手段对镀铝层的形貌及晶型结构进行表征,考察了电流密度、电镀时间、温度及供电形式等对电镀铝的影响.结果表明:尿素-NaBr-KBr-甲酰胺-AlCl3离子液体的电导率随温度的升高而升高;脉冲电镀铝层性能优于直流电镀铝层;在电流密度50 mA/cm2,温度70℃,时间45 min条件下,利用数控脉冲电镀电源(ton =2 ms,toff =8 ms)在该离子液体中进行脉冲电镀,所得镀铝层结合力较好且镀层光亮、致密均匀、电结晶较好、纯度高,单质铝优先沿(200)晶面生长.","authors":[{"authorName":"杨志","id":"f676776c-a7a5-4909-8776-ec94f52afc48","originalAuthorName":"杨志"},{"authorName":"闫瑞景","id":"25923a40-9b98-4f43-b971-9a782dbd0ff4","originalAuthorName":"闫瑞景"},{"authorName":"梁镇海","id":"d6731091-47c3-4a2c-88a4-014a24b279d9","originalAuthorName":"梁镇海"}],"doi":"","fpage":"31","id":"937bdbdd-8399-487c-86e4-a9d9f471977f","issue":"1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"cface3b3-eb23-4ebc-9cfd-d6518e1c5c2c","keyword":"脉冲电镀","originalKeyword":"脉冲电镀"},{"id":"5eb4649f-750f-4233-882d-b07309e455f5","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"5518090c-4194-47b2-a012-e18b12b8800e","keyword":"AlCl3","originalKeyword":"AlCl3"},{"id":"11546fd6-c570-4561-8838-237d6db9de2e","keyword":"电镀铝","originalKeyword":"电镀铝"},{"id":"17bbaa71-ecec-4428-a7fc-79b22e7463c1","keyword":"形貌","originalKeyword":"形貌"},{"id":"1fd5224c-6927-47a8-8521-2e3238fdc642","keyword":"晶型结构","originalKeyword":"晶型结构"}],"language":"zh","publisherId":"clbh201301010","title":"离子液体中脉冲电镀铝","volume":"46","year":"2013"},{"abstractinfo":"首先介绍了碱性离子液体制备生物柴油的优势及原理,归纳总结了碱性离子液体催化制备生物柴油的研究现状,分析了存在的问题,展望了碱性离子液体在生物柴油制备方面的应用前景.","authors":[{"authorName":"刘扩金","id":"1202d1c2-01da-44f1-84a7-aefccd453539","originalAuthorName":"刘扩金"},{"authorName":"王介妮","id":"447ad8e0-1afd-45a7-aa19-80e47ad5425e","originalAuthorName":"王介妮"},{"authorName":"曹磊昌","id":"2b3fbd86-9501-413a-a148-8ae61c1fc836","originalAuthorName":"曹磊昌"},{"authorName":"韩生","id":"781d768c-6856-42ad-9d69-daebf78b0fa5","originalAuthorName":"韩生"}],"doi":"","fpage":"227","id":"a1b06426-7a9e-4b53-911a-e29166cfb2b1","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"044ad6c8-c9cc-456e-b6e8-77ddfda63f1b","keyword":"生物柴油","originalKeyword":"生物柴油"},{"id":"007c8363-19cc-40f8-bd5c-acfdf3e8eb98","keyword":"碱性离子液体","originalKeyword":"碱性离子液体"},{"id":"1696bf3d-d4c5-4731-b500-23f289a9b696","keyword":"酯交换","originalKeyword":"酯交换"},{"id":"66d5c611-d4dd-47f1-b506-0b155f84b865","keyword":"催化","originalKeyword":"催化"}],"language":"zh","publisherId":"cldb2013z1064","title":"碱性离子液体催化制备生物柴油研究进展","volume":"27","year":"2013"},{"abstractinfo":"合成了开链冠醚Schiff碱配体H2L(H2L=N,N'-双(邻羟苯亚甲基).3,6-二氧杂-1,8-二氨基辛烷).详细研究了该配体在不同溶剂中和过渡金属离子存在下的荧光光谱,探讨了溶剂极性和不同金属离子对其荧光光谱的影响.结果表明:溶剂的极性和金属离子对其荧光性质有较大影响,随着溶剂极性的减小,配体的荧光增强,且谱峰发生蓝移.金属离子Zn2+、Cd2+对配体具有荧光增敏作用,Ni2+、Cu2+具有荧光猝灭作用.探讨了配体与金属离子结合的pH范围,结果显示最佳pH值为7-8.","authors":[{"authorName":"俞天智","id":"09d00a0a-1bb1-4d6b-aef2-6eb0645d6667","originalAuthorName":"俞天智"},{"authorName":"丁宪生","id":"7b239858-9e24-45f0-acea-a0251d88812b","originalAuthorName":"丁宪生"},{"authorName":"赵玉玲","id":"266104b3-33d8-41d2-92ce-a245e19a4ffc","originalAuthorName":"赵玉玲"},{"authorName":"钱隆","id":"17193ff6-ada9-4469-9bc1-75ab38948acb","originalAuthorName":"钱隆"},{"authorName":"范多旺","id":"d4f9b9d7-57c1-4c79-b78f-3cf431933d47","originalAuthorName":"范多旺"}],"doi":"","fpage":"109","id":"8be8d098-79d7-4f75-b741-dbfd1104591e","issue":"2","journal":{"abbrevTitle":"YXKXYGHX","coverImgSrc":"journal/img/cover/YXKXYGHX.jpg","id":"74","issnPpub":"1674-0475","publisherId":"YXKXYGHX","title":"影像科学与光化学 "},"keywords":[{"id":"6a6aeb0b-7de6-42bd-ace2-d1954461b045","keyword":"开链冠醚Schiff碱配体","originalKeyword":"开链冠醚Schiff碱配体"},{"id":"78a1642e-9cbf-430d-8876-f9ed5b46eacf","keyword":"过渡金属离子","originalKeyword":"过渡金属离子"},{"id":"d849687d-5a0e-46ff-adb8-b56b29f46560","keyword":"荧光光谱","originalKeyword":"荧光光谱"}],"language":"zh","publisherId":"ggkxyghx200802005","title":"开链冠醚Schiff碱配体与过渡金属离子相互作用研究","volume":"26","year":"2008"},{"abstractinfo":"离子液体是在室温或接近室温条件下由离子组成的电解质.在离子液体中可以沉积出元素周期表中的大多金属、半导体金属及其化合物.简要介绍了离子液体的发展历史、种类和特点,并介绍了金属在不同种类离子液体中的电沉积,论述了在离子液体中金属电沉积应用的机遇与挑战.","authors":[{"authorName":"程弯弯","id":"5d2a8f81-e1a8-4049-984b-e181b144b3f8","originalAuthorName":"程弯弯"},{"authorName":"赵平","id":"a51e1b2d-c913-4471-bb67-2f0d3f6289d3","originalAuthorName":"赵平"},{"authorName":"王欢","id":"8db72919-a9e0-4fec-8535-d982903899b0","originalAuthorName":"王欢"}],"doi":"10.3969/j.issn.1001-3849.2015.07.006","fpage":"25","id":"58ec6ca5-6949-41f0-8dd2-be2d2d73e326","issue":"7","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"cd42e494-7da0-4de3-bca8-2bae843acc0a","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"81ae3270-407a-41ac-b35d-71a336e827cd","keyword":"金属","originalKeyword":"金属"},{"id":"39b4b172-f2d5-4877-b436-bfdc134bd3ef","keyword":"电沉积","originalKeyword":"电沉积"}],"language":"zh","publisherId":"ddjs201507006","title":"金属在离子液体中的电沉积研究综述","volume":"37","year":"2015"},{"abstractinfo":"离子液体由于具有极低的蒸气压、较高的热稳定性和可调的溶解能力被作为一种取代传统挥发性有机溶剂的绿色介质而广泛地应用在有机合成、分离提纯领域;由于电导率高、稳定电化学窗口宽和可调的酸碱性被作为新型电解质和高效催化剂而应用于催化化学和电化学研究领域;由于其配位能力低、界面张力和界面能小以及它们易形成氢键而具有的较高有序性使它们在具有特殊形貌的纳米材料制备中既可作介质又起到模板剂的作用.因此离子液体的研究无论对科学基础理论研究还是实际应用都有极为重要的意义.","authors":[{"authorName":"康永","id":"ebb5c9e5-c246-41be-a1a2-b6eec918a71e","originalAuthorName":"康永"}],"doi":"10.3969/j.issn.1671-5381.2011.01.010","fpage":"42","id":"6e7596d9-457a-4d85-a2a8-5307023b7457","issue":"1","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"a8b120b8-58f7-4406-8700-a6026fd0b441","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"8fd0a0f2-d3d4-4e24-80d9-c7735d590c8e","keyword":"特性","originalKeyword":"特性"},{"id":"fe95e265-7902-424c-816d-ba17db3308f8","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"hccllhyyy201101010","title":"离子液体的特性及其应用","volume":"40","year":"2011"}],"totalpage":2300,"totalrecord":23000}