{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用一道次热轧法制备镁铝复合板,研究了轧制温度、压下量、退火温度与时间对Al-Mg-Al复合板抗拉强度的影响规律.结果表明,Al-Mg-Al板的抗拉强度随轧制温度的升高先增大后减小,随压下量的增大先升高后降低.当温度为350℃,压下量为35%时,试样达最大抗拉强度296 MPa.退火工艺对试样抗拉强度有明显影响,试样的抗拉强度随退火温度的升高先增大后减小,随退火时间的延长而减小.实验得出最佳退火工艺为退火温度300℃,退火时间20 min.","authors":[{"authorName":"刘兴海","id":"2fa85b2f-574a-472c-9970-2ae85ebe14a2","originalAuthorName":"刘兴海"},{"authorName":"张焜禹","id":"05b011b3-2202-47e0-b518-a556eecde05b","originalAuthorName":"张焜禹"},{"authorName":"董丽","id":"f0cfcaba-d7f6-41ab-bd42-3c5c755631b1","originalAuthorName":"董丽"},{"authorName":"卫爱丽","id":"d0759774-ff64-4740-9543-96b0d63a96f3","originalAuthorName":"卫爱丽"}],"doi":"","fpage":"101","id":"048a157f-bc4a-4235-9f64-179cdcc9f526","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f73c6aa1-b8eb-475c-b923-70560194d829","keyword":"Al-Mg-Al复合板","originalKeyword":"Al-Mg-Al复合板"},{"id":"958c350f-0f29-4677-8e50-e0d904ecd068","keyword":"抗拉强度","originalKeyword":"抗拉强度"},{"id":"74121db3-efa5-4173-baf8-ad216cd9258a","keyword":"热轧法","originalKeyword":"热轧法"},{"id":"c3a12fbb-c562-4eb2-bbb8-bc7644bb736f","keyword":"一道次轧制","originalKeyword":"一道次轧制"}],"language":"zh","publisherId":"cldb201410026","title":"Al-Mg-Al复合板抗拉强度研究","volume":"28","year":"2014"},{"abstractinfo":"为优化大型复杂薄壁壳体第一道次旋压的工艺参数,基于ABAQUS平台建立了大型锥形件实体单元仿真模型,二次开发实现了实体单元的壁厚和贴模度输出功能,分析了坯料直径及成形区与成形外端相互作用对大型锥形件强旋成形的影响.同时采用正交试验设计安排模拟方案,研究了工艺参数对大型锥形件强旋成形质量的影响规律,得出了较优的工艺参数组合.结果表明:旋压间隙是最重要的影响因素,零偏离附近的成形质量最好;稍大的旋轮圆角半径有利于降低大型锥形件强旋过程中出现局部失稳和拉裂的可能性;稍大的旋轮进给比有利于改善大型锥形件的壁厚均匀性和贴模性、减小壁厚偏差和出现局部失稳的可能性.","authors":[{"authorName":"吴统超","id":"38d5ffff-b83d-4094-aaeb-5e25041e866b","originalAuthorName":"吴统超"},{"authorName":"詹梅","id":"0f907a78-0aaf-41e1-94b8-fc37a17cf797","originalAuthorName":"詹梅"},{"authorName":"古创国","id":"ccfdbde0-ac83-490a-bed4-8497f22b0c55","originalAuthorName":"古创国"},{"authorName":"蒋华兵","id":"96d901d8-77c0-40b0-afc7-38fa0ef8125c","originalAuthorName":"蒋华兵"},{"authorName":"杨合","id":"40698d52-06e5-4dde-be14-eb7acdb90927","originalAuthorName":"杨合"}],"doi":"","fpage":"121","id":"916a97e1-f0e4-4afd-bb38-af5b41dacbab","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"317d9b2b-3b17-4125-9631-eb3d60cd0e79","keyword":"大型复杂薄壁壳体","originalKeyword":"大型复杂薄壁壳体"},{"id":"eeacce52-65c7-4a85-a8e0-6f7b8cbba63c","keyword":"多道次旋压","originalKeyword":"多道次旋压"},{"id":"5392c663-cf2f-4565-86bf-aa0dcfe257ae","keyword":"实体模型","originalKeyword":"实体模型"},{"id":"dae60038-fbbf-40fd-b596-6b32986ab33b","keyword":"二次开发","originalKeyword":"二次开发"},{"id":"2f252d53-9984-4027-91d2-9941afb62510","keyword":"局部失稳","originalKeyword":"局部失稳"}],"language":"zh","publisherId":"clkxygy201101024","title":"大型复杂薄壁壳体第一道次旋压成形质量分析","volume":"19","year":"2011"},{"abstractinfo":"在中厚板轧机无液压弯辊条件下,为防止传统轧制规程计算方法造成的板形问题,提出了一种末道次轧制力锁定的轧制规程计算方法.该方法将操作工提前给定的末道次轧制力作为轧制规程计算的约束条件之一,通过控制道次规程末道次的轧制力达到控制板形的目的.实际应用结果表明,该方法使操作工能够根据经验对板形进行有效控制,明显减少中浪、边浪等板形问题,具有良好的使用价值.","authors":[{"authorName":"崔海涛","id":"7d4431be-81cf-45c5-8feb-993d1f26b5f9","originalAuthorName":"崔海涛"},{"authorName":"许磊","id":"dc6a44af-0c02-4c5b-8abb-ebf50589891e","originalAuthorName":"许磊"},{"authorName":"王国栋","id":"aa9561d1-2e49-48c2-ab74-7cf9967f10d6","originalAuthorName":"王国栋"}],"doi":"","fpage":"53","id":"7ea511c9-8d48-4f10-ae75-484f753e82a2","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"30792489-c921-4eeb-97a7-5a69430d4ad7","keyword":"末道次轧制力","originalKeyword":"末道次轧制力"},{"id":"adc4f30a-697c-41eb-a754-81192a6efbe9","keyword":"中厚板","originalKeyword":"中厚板"},{"id":"aa589382-7998-4172-a9ff-54b6358a6d2a","keyword":"轧制规程","originalKeyword":"轧制规程"}],"language":"zh","publisherId":"gt201105012","title":"末道次轧制力锁定法在中厚板规程计算中的应用","volume":"46","year":"2011"},{"abstractinfo":"在中厚板轧机无液压弯辊条件下,为防止传统轧制规程计算方法造成的板形问题,提出了一种末道次轧制力锁定的轧制规程计算方法。该方法将操作工提前给定的末道次轧制力作为轧制规程计算的约束条件之一,通过控制道次规程末道次的轧制力达到控制板形的目的。实际应用结果表明,该方法使操作工能够根据经验对板形进行有效控制,明显减少中浪、边浪等板形问题,具有良好的使用价值。","authors":[{"authorName":"崔海涛,许磊,王国栋","id":"e04a67a4-5000-4506-8990-d7e46e1a63cf","originalAuthorName":"崔海涛,许磊,王国栋"}],"categoryName":"|","doi":"","fpage":"53","id":"a985e536-a70a-45be-9f39-1eb8c40aad5f","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1ebd06a9-5833-4b7f-a69e-83cc7f9685f1","keyword":"末道次轧制力; 中厚板; 轧制规程","originalKeyword":"末道次轧制力; 中厚板; 轧制规程"}],"language":"zh","publisherId":"0449-749X_2011_5_11","title":"末道次轧制力锁定法在中厚板规程计算中的应用","volume":"46","year":"2011"},{"abstractinfo":"中厚板道次规划算法是中厚板过程控制技术的核心。比较了Siemens采用SQP算法、国内综合等储备方法以及简化的二次型规划算法。Siemens的SQP算法复杂,参数配置困难;综合等储备方法的算法较简单,但是对物理模型和边界条件要求较高,存在计算得不出结果的问题;简化的二次型规划算法相比其它2个算法稳定性和参数配置都比较容易,计算速度快。实践表明,该方法更适合工业现场的在线应用。","authors":[{"authorName":"王琦","id":"72d6e146-1a3f-4f0d-9470-13745453770e","originalAuthorName":"王琦"},{"authorName":"杨雁青","id":"c9df81ba-900b-4aa9-99a6-b364b43348cc","originalAuthorName":"杨雁青"},{"authorName":"罗文涛","id":"cc058036-1800-40e8-9e39-bbc718129c59","originalAuthorName":"罗文涛"},{"authorName":"王健","id":"0efee26a-46ff-4bd5-8846-c74196a5a4e5","originalAuthorName":"王健"},{"authorName":"苗雨川","id":"1a02480a-8dce-440d-94cf-521df1dae2f9","originalAuthorName":"苗雨川"}],"doi":"","fpage":"13","id":"a7e09486-338d-48ce-9afd-7b8b18d5eac0","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"cde51005-2d67-4064-93c0-31483faf8253","keyword":"算法","originalKeyword":"算法"},{"id":"27009488-323c-4c1a-a9e9-14dad43c803b","keyword":"轧制规程","originalKeyword":"轧制规程"},{"id":"c76fcfd0-383d-4c88-bcde-1c011753f67a","keyword":"物理模型","originalKeyword":"物理模型"},{"id":"c32e14a4-2581-4b2e-b054-8f9cb4560840","keyword":"二次型规划","originalKeyword":"二次型规划"},{"id":"237d18f1-eb46-410a-8e60-26152525b676","keyword":"工业应用","originalKeyword":"工业应用"}],"language":"zh","publisherId":"gtyj201201005","title":"中厚板轧制道次规划算法的研究","volume":"40","year":"2012"},{"abstractinfo":"通过改变轧制道次变形量,制备AgCuNi/TU1复合材料样品.样品分剪后测量其侧弯度,利用XRD测定AgCuNi/TU1复合材料残余应力分布情况.结果表明:初始道次变形量对AgCuNi/TU1复合材料分剪后的侧弯度影响较大,在道次轧制压力基本相同的条件下,轧制的复合材料板形较好.基体有复层的部分残余应力为拉应力,而没有复层的部分残余应力为压应力,样品分剪后向有复层的一侧产生侧弯.","authors":[{"authorName":"刘少斌","id":"d90be508-ffe0-4ada-b899-1150b156eafe","originalAuthorName":"刘少斌"},{"authorName":"王健","id":"ba06615a-936b-4828-b9e8-7141bf6178d4","originalAuthorName":"王健"},{"authorName":"李佩","id":"9d0cff16-ff8d-4769-883b-82c65788ecc9","originalAuthorName":"李佩"},{"authorName":"顾彬","id":"7b423f63-53a1-4a3c-a49e-4882be74455f","originalAuthorName":"顾彬"},{"authorName":"卫思璇","id":"6d92d992-0277-4132-a307-1f272f4cc95d","originalAuthorName":"卫思璇"},{"authorName":"周世平","id":"faa5e065-e788-4ce8-87cb-178ec379c63b","originalAuthorName":"周世平"}],"doi":"10.3969/j.issn.1004-0676.2010.02.009","fpage":"37","id":"b33b7a3f-a987-499c-ab57-fb870c530732","issue":"2","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"aa080c6b-7531-4444-aedb-b6aa0426af14","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"14d3166b-4c76-4e5a-b08d-5b8ce6daadd5","keyword":"轧制道次变形量","originalKeyword":"轧制道次变形量"},{"id":"b3e51289-649b-4b70-b595-265e1a58a5b6","keyword":"残余应力","originalKeyword":"残余应力"},{"id":"27810f50-2c08-4281-b57c-0eb9923005e5","keyword":"侧弯度","originalKeyword":"侧弯度"}],"language":"zh","publisherId":"gjs201002009","title":"轧制道次变形量对AgCuNi/TU1复合材料板形的影响","volume":"31","year":"2010"},{"abstractinfo":"利用有限元分析软件ANSYS/LS-DYNA,对H型钢开坯轧制四道次进行了有限元模拟.详细介绍了有限元模型的建立,材料模型的选择,单元的选择以及网格的划分.得到了各道次轧件的模拟变形结果.对轧件的变形和轧制区内应力场的分布进行了深入的分析,为轧制异型断面型钢的显式动力学有限元模拟提供了参考.","authors":[{"authorName":"朱国明","id":"0d20dbc6-9d6a-46bb-bef9-5e6c2f7aa99f","originalAuthorName":"朱国明"},{"authorName":"吴迪","id":"6adcf7ea-814e-455e-88b6-89860006ae3d","originalAuthorName":"吴迪"},{"authorName":"赵宪明","id":"026f9419-ffd5-46e5-87df-563bf34824dd","originalAuthorName":"赵宪明"}],"doi":"10.3969/j.issn.1671-6620.2002.03.017","fpage":"226","id":"2c6ccc0c-fd40-4210-a2cb-38de1469a59c","issue":"3","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"ab4330d2-8e39-4d48-b811-d970888b57fd","keyword":"H型钢","originalKeyword":"H型钢"},{"id":"5aec466b-4535-4478-bacb-9b07461facb7","keyword":"弹塑性有限元","originalKeyword":"弹塑性有限元"},{"id":"251448ba-90a8-4fda-abfa-bf43574098bf","keyword":"ANSYS/LS-DYNA","originalKeyword":"ANSYS/LS-DYNA"}],"language":"zh","publisherId":"clyyjxb200203017","title":"H型钢开坯轧制四道次有限元模拟","volume":"1","year":"2002"},{"abstractinfo":"塑性较差的六方结构镁合金轧制时易出现裂纹,尤其是在1mm以下薄板带的终轧阶段.其原因是在较低温度下基面取向晶粒内形成的切变带不易扩展所致.研究了MB1,AZ31(MB2)镁合金在热模拟条件和实验室热轧过程中利用静态再结晶改善形变组织、细化晶粒、提高成形性的规律.实验表明,在选择的多道次轧制退火工艺下可顺利轧出0.3mm厚的薄板带,得到平均尺寸~7μm的等轴细晶.热模拟条件下得到的形变温度、形变量和形变组织的关系可帮助确定实际生产轧制过程中各道次轧制的温度.织构测定表明,各阶段退火前后都得到强的基面织构.终轧阶段无法利用{10 12}拉伸孪晶的静态再结晶细化晶粒,而只能利用压缩孪晶/扩展的切变带的再结晶细化晶粒.本文对轧制时利用动、静态再结晶细化晶粒的潜力及工艺优化进行了讨论.","authors":[{"authorName":"杨平","id":"e4419cd4-1e0d-470e-9aea-62c6e68469e1","originalAuthorName":"杨平"},{"authorName":"孟利","id":"abec8816-7ebd-4491-8df1-fad8382225fb","originalAuthorName":"孟利"},{"authorName":"毛卫民","id":"73ff7d16-f1d7-4f5c-9039-8903b1120837","originalAuthorName":"毛卫民"},{"authorName":"蔡庆武","id":"e35ba433-bee8-4bdc-92e5-041ef9213538","originalAuthorName":"蔡庆武"}],"doi":"10.3969/j.issn.1009-6264.2005.02.009","fpage":"34","id":"82608404-4a8d-4d7b-a001-de036339b48a","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"65d2d78b-73da-4817-999b-cf18ed9ea0ff","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"726690c6-3616-4258-ab5e-57a9a375582f","keyword":"轧制","originalKeyword":"轧制"},{"id":"b445b3ba-de19-4c21-a299-ea79bae23979","keyword":"晶粒细化","originalKeyword":"晶粒细化"},{"id":"19a6bafb-122e-45e8-9eab-3b6d7accbcf7","keyword":"组织","originalKeyword":"组织"},{"id":"e968b31e-eefc-4098-8f2b-ed5c51b9623e","keyword":"织构","originalKeyword":"织构"}],"language":"zh","publisherId":"jsrclxb200502009","title":"利用道次间退火改善镁合金轧制成形性的研究","volume":"26","year":"2005"},{"abstractinfo":"对60 kg/m U71Mn重轨轧制全道次进行了三维热力耦合有限元模拟.轧辊建模时分别通过翻转和平移轧辊来实现轧件翻钢和侧向推钢过程;轧件的建模采用抽取中间截面网格拉伸的建模方法,既消除网格畸变的影响又使得前后数据得到继承.模拟结果表明:重轨轧制过程中存在严重的不均匀变形,铸坯横断面金属质点在轧制过程中沿轧制方向不同步;轨底部位金属沿轧制方向和轨底高度方向流动;轨腰部位金属沿轧制方向和宽度方向流动,其中心向轨底部位偏移;轨头金属沿轧制方向被延伸.人工打孔制造缺陷坯轧制试验的特征点位置变化与模拟结果吻合良好,验证了轧件在各道次的金属流变规律.所建立的金属在轧制过程中的位置对应关系可以为生产过程中轧制缺陷的溯源分析提供便利.","authors":[{"authorName":"周家林","id":"ad73405e-aaef-4809-bff0-7160767ea5eb","originalAuthorName":"周家林"},{"authorName":"赖春明","id":"746fdd54-331d-4581-8aaf-e17fbbe436ed","originalAuthorName":"赖春明"},{"authorName":"谢志强","id":"3efc2ab0-9650-4edf-afa5-9a0c58d2df1d","originalAuthorName":"谢志强"},{"authorName":"史密","id":"9e7d349b-85f4-410b-a209-8c44e196c85c","originalAuthorName":"史密"},{"authorName":"雷波荣","id":"0db74b41-c7e2-4449-96e8-f3d536466242","originalAuthorName":"雷波荣"},{"authorName":"王俊","id":"a73f63f1-4c05-498c-a857-036424d0010e","originalAuthorName":"王俊"}],"doi":"10.13228/j.boyuan.issn1001-0963.20140131","fpage":"35","id":"969444bf-3c75-4498-b56b-9ab9c5a7c15d","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"3072bf2a-85c7-4849-9011-86f63d40a669","keyword":"U71Mn重轨","originalKeyword":"U71Mn重轨"},{"id":"657e9db9-60f4-4325-a239-5dd945844caa","keyword":"孔型轧制","originalKeyword":"孔型轧制"},{"id":"4854a1a9-9a3f-4b0f-897d-400912017bf2","keyword":"有限元模拟","originalKeyword":"有限元模拟"},{"id":"e9c5bdc0-47eb-47aa-b7d9-a687a54850df","keyword":"金属流动","originalKeyword":"金属流动"},{"id":"61b470de-1adb-4800-90d3-f0236aa73842","keyword":"缺陷坯轧制试验","originalKeyword":"缺陷坯轧制试验"}],"language":"zh","publisherId":"gtyjxb201504007","title":"60kg/m重轨轧制全道次的有限元模拟和试验研究","volume":"27","year":"2015"},{"abstractinfo":"对铸态Mg-6Gd-3Y-1Zn-0.5Zr合金在510℃进行不同保温时间的均匀化退火处理,之后再在450℃下进行1~5道次的轧制,研究了均匀化退火时间和轧制道次对合金组织及拉伸性能的影响.结果表明:与退火12 h的合金相比,退火40 h 合金中片层状 LPSO 相的数量明显增多,这导致其强度和塑性较低;随着轧制道次增加,合金中的再结晶体积分数增大,合金的强度和塑性逐渐提高;合金在510℃退火40 h 后再经5道次轧制后具有最佳的拉伸性能,屈服强度为271 MPa,抗拉强度为340 MPa,伸长率为9.0%.","authors":[{"authorName":"宫敏利","id":"82b0a917-ab28-4d55-a829-adf4db7846de","originalAuthorName":"宫敏利"},{"authorName":"刘楚明","id":"2b3965d5-c61d-469a-9bd2-cdd2d1861f9a","originalAuthorName":"刘楚明"},{"authorName":"周小杰","id":"d644c54e-a266-440e-a36f-089967bb5436","originalAuthorName":"周小杰"}],"doi":"10.11973/jxgccl201607003","fpage":"13","id":"bc05b68b-3f25-4038-a228-b0b78a4c5811","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"3c3fae1c-96e8-41ea-9778-03ad4507c168","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"ed332968-18f5-4729-bd68-fe0824e1ccf4","keyword":"均匀化退火","originalKeyword":"均匀化退火"},{"id":"e9643423-da22-4c18-b8b9-ac79f26e5725","keyword":"轧制","originalKeyword":"轧制"},{"id":"d738dec3-d32d-4f16-9b36-d8aed68f5854","keyword":"拉伸性能","originalKeyword":"拉伸性能"}],"language":"zh","publisherId":"jxgccl201607003","title":"均匀化退火时间和轧制道次对镁钆钇锌锆合金组织及拉伸性能的影响","volume":"40","year":"2016"}],"totalpage":8242,"totalrecord":82412}