{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"电压加载方式会影响微弧氧化过程及膜层性能。利用自制的具有多种输出脉冲形式的电源,在不同的电压增量下加载对AZ91D镁合金微弧氧化,研究了加载方式对微弧氧化过程及膜层性能的影响。结果表明:随着电压增量的增加,成膜速率增大,膜层粗糙度变大,表面的孔径增大、孔隙率增加;膜层的最终厚度主要取决于终止电压,而终止电压相同时,电压增量越大,平均耗能越小;微弧氧化的不同阶段应采用不同的电压增量,开始阶段将其恒定为10v/min,当电压达到350V后改增量为5V/min直至终止电压,这种加载方式制膜时的成膜效率、能耗及膜层耐蚀性、表面性能等综合结果较好。","authors":[{"authorName":"彭飞","id":"cb87fcb3-93ac-4700-a4b5-50d4b880f72a","originalAuthorName":"彭飞"},{"authorName":"马跃洲","id":"22dc6d3e-28d7-4327-bd8f-a789b0fc6ce1","originalAuthorName":"马跃洲"},{"authorName":"王鹏","id":"8da3b5dd-9c8f-4b88-a23a-7ba79ec1f9ef","originalAuthorName":"王鹏"},{"authorName":"杨亮","id":"a3e4052a-0ffe-4a73-b7a2-1c11d93d4a34","originalAuthorName":"杨亮"},{"authorName":"田明辉","id":"13168a25-19bd-40cb-97b9-53f21e4ca880","originalAuthorName":"田明辉"}],"doi":"","fpage":"12","id":"f9b69a59-7e7d-4b6e-96e4-0422253b1cc7","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d1a11c8f-32da-40d4-bc4f-458274e0ef8e","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"c764ed3c-9276-4a21-b3a7-3c773791500a","keyword":"电压加载方式","originalKeyword":"电压加载方式"},{"id":"16c16a52-3219-49f1-9400-af3a4a5bfeb2","keyword":"AZ91D镁合金","originalKeyword":"AZ91D镁合金"},{"id":"b5a0cc34-b0b4-49e7-8169-cc7367ee1074","keyword":"电压增量","originalKeyword":"电压增量"},{"id":"8a9268f2-2591-42cb-82b1-42397d51d0ab","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clbh201207007","title":"电压加载方式对镁合金微弧氧化过程及膜层性能的影响","volume":"45","year":"2012"},{"abstractinfo":"本文将COD位移规引进悬臂弯曲加载方式,从而替代传统的应变片实现裂纹前缘的应变控制.借助有限元数值模拟,研究了COD位移规装卡刀口的位置和形状对悬臂弯曲加载试样(GROSS试样)本身对称性的影响.结果表明:COD位移规装卡刀口开度越大,刀口造成的监控点应变非对称畸变越小;而装卡刀口宽度一定时,监控点应变对称性受到的扰动强度随COD位移规装卡刀口尖端角度的减小而降低.考虑到现有COD位移规量程及装卡的稳定性,最终选择实际试样中COD规装卡刀口宽度为10 mm,刀口尖端根部取15..通过COD规进行应变控制试验时,其装卡刀口相对位移-监控点应变遵从线性关系,因此,这种悬臂弯曲加载方式应变控制方法的改进是合理可靠的,且控制稳定,操作简单.","authors":[{"authorName":"张利娟","id":"df9b0284-d6ce-4a41-8c5c-5800c8ac86fa","originalAuthorName":"张利娟"},{"authorName":"张亚军","id":"52ac51fb-b822-4998-b01d-f63b5e56339f","originalAuthorName":"张亚军"},{"authorName":"刘彤","id":"d1e65859-f864-4f43-9ff7-006c2fb7f77e","originalAuthorName":"刘彤"}],"doi":"","fpage":"58","id":"0779974d-f61e-4ad3-ac92-fde4071c0462","issue":"6","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"ba8d93d2-3d00-4cd9-a4a4-e52f760c65a3","keyword":"悬臂弯曲加载","originalKeyword":"悬臂弯曲加载"},{"id":"81cccd1e-0720-4937-99e0-0b68f2b8ac59","keyword":"应变控制","originalKeyword":"应变控制"},{"id":"10c6ce07-0c36-451c-aaec-7caf313ee50d","keyword":"COD位移规","originalKeyword":"COD位移规"}],"language":"zh","publisherId":"clkfyyy201206014","title":"悬臂弯曲加载方式的应变控制方法研究","volume":"27","year":"2012"},{"abstractinfo":"通过实验和有限元(FEM)计算研究了加载速率、缺口几何和加载方式对16MnR钢解理断裂行为的影响.结果表明,该钢的解理断裂机理及相应测得的细观解理断裂应力δf和宏观解理断裂应力δF不随加载速率、缺口几何和加载方式发生变化.不同缺口几何和加载方式试样的缺口韧性随加载速率的变化可以通过判据δyymax≥δF预测.δyymax为缺口前的最大正应力,可通过有限元计算得到.δF可作为一个工程缺口韧性参数用于含缺口类缺陷的结构完整性评定中.钢的δF值可用Griffiths-Owen 缺口试样在一个温度和加载速率下获得.","authors":[{"authorName":"王国珍","id":"7cbcf063-c76c-42f5-b045-22b57fe6bd7d","originalAuthorName":"王国珍"},{"authorName":"王玉良","id":"1aa3ab92-068c-4015-bd5a-0235f3f27ae6","originalAuthorName":"王玉良"},{"authorName":"轩福贞","id":"fa6e460b-3564-4134-ab4c-554cc581a7d8","originalAuthorName":"轩福贞"},{"authorName":"涂善东","id":"0ae8b798-757f-4fc4-920c-068098e0ba12","originalAuthorName":"涂善东"},{"authorName":"王正东","id":"8c9f7a6f-2a3c-42a4-a88d-888932e2d137","originalAuthorName":"王正东"}],"doi":"10.3321/j.issn:0412-1961.2009.07.016","fpage":"866","id":"b2d8cc10-dc98-4bdb-90ba-16cb9d809857","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"3217e708-f426-44d9-8a06-d5b9c062e606","keyword":"16MnR钢","originalKeyword":"16MnR钢"},{"id":"efb902fa-ce5f-4e16-9c26-c35ae95ed84c","keyword":"解理断裂","originalKeyword":"解理断裂"},{"id":"59dd126c-5df5-41a8-98da-17006f4b4540","keyword":"加载速率","originalKeyword":"加载速率"},{"id":"deb86192-fcb3-476b-8608-87e7b55b76f0","keyword":"缺口试样","originalKeyword":"缺口试样"},{"id":"e8a7e04f-7344-434d-a11f-b1faa4f0cd20","keyword":"应力","originalKeyword":"应力"},{"id":"3d3268a3-ad5b-47a3-8db8-06e018b1a3c3","keyword":"加载方式","originalKeyword":"加载方式"}],"language":"zh","publisherId":"jsxb200907016","title":"加载速率、缺口几何和加载方式对16MnR钢解理断裂行为的影响","volume":"45","year":"2009"},{"abstractinfo":"利用疲劳试验机研究了28CrMo钢在三角波、方波和正弦波3种加载方式下三点弯曲疲劳实验过程中疲劳裂纹扩展速度与自发射磁信号的相关性,用扫描电镜对疲劳断口特征进行了研究.结果表明:加载方式不同,疲劳裂纹扩展速度不同,其中三角波加载方式下裂纹扩展速度最快,自发射磁信号最大,正弦波加载方式下裂纹扩展速度最慢,其自发射磁信号最小,方波加载方式则介于两者之间.基于磁荷概念和Ansys模拟结果分析了不同加载方式下疲劳裂纹扩展过程中自发射磁信号的变化规律.断口扫描分析结果表明3种加载方式下的疲劳断口均为类解理断裂.","authors":[{"authorName":"陈孝文","id":"6f1c94d9-e8dc-4108-986e-54d7e37ab4b0","originalAuthorName":"陈孝文"},{"authorName":"张德芬","id":"e300bc9a-f491-4ddd-b4b8-19e989bdf59d","originalAuthorName":"张德芬"},{"authorName":"石霜霜","id":"1d1dcaba-53ce-4e56-be4c-6f35321fc6e7","originalAuthorName":"石霜霜"},{"authorName":"王立君","id":"b8616ccb-a702-4496-94c5-bf329b7432d2","originalAuthorName":"王立君"},{"authorName":"吕东莉","id":"29470f33-77eb-49c5-8107-b97a3ac7b61d","originalAuthorName":"吕东莉"},{"authorName":"施太和","id":"ce0d9a94-b896-40d4-8339-d9f496a7285a","originalAuthorName":"施太和"}],"doi":"","fpage":"109","id":"c842c51c-901b-449a-a7c6-d5160a86163d","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"702e9314-8ea5-4788-b8c0-6a5bbadf8045","keyword":"加载方式","originalKeyword":"加载方式"},{"id":"1a3ec88f-3783-4935-9513-b991cd7d547b","keyword":"金属磁记忆","originalKeyword":"金属磁记忆"},{"id":"f699a31e-b3e8-433b-b846-18477f7ff63f","keyword":"疲劳裂纹","originalKeyword":"疲劳裂纹"},{"id":"25facd88-753d-4d88-9c48-73ab1e5c797f","keyword":"Ansys模拟","originalKeyword":"Ansys模拟"},{"id":"08131342-1ae6-4bbc-80ca-53dbbd19e4dd","keyword":"磁荷","originalKeyword":"磁荷"}],"language":"zh","publisherId":"jsrclxb201311021","title":"加载方式对28CrMo钢疲劳裂纹扩展的影响","volume":"34","year":"2013"},{"abstractinfo":"系统研究了加载方式(静载荷、循环载荷、动载荷)对 Si3N4陶瓷疲劳特性的影响.结果发现,加载方式不同,材料的应力腐蚀指数 n亦不相同,其中,静载下 n最大,动载荷次之,循环载荷下 n最小,并分析了循环载荷及动载荷对材料造成的附加损伤.","authors":[{"authorName":"王红洁","id":"9723b70a-6837-4df1-8f35-308ea3156e9c","originalAuthorName":"王红洁"},{"authorName":"王永兰","id":"fd847766-4215-4fa8-85b9-cbb6a6bf6aa2","originalAuthorName":"王永兰"},{"authorName":"金志浩","id":"1227c006-2492-4fdd-a6c2-d28fc07372a9","originalAuthorName":"金志浩"}],"doi":"","fpage":"335","id":"1c7f8873-1bd8-49b7-bb9e-b1afe7790149","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"bf4639dc-0aab-4648-9e93-fed440b1d00d","keyword":"氮化硅陶瓷","originalKeyword":"氮化硅陶瓷"},{"id":"cca26fed-e97b-464a-b121-6374a77fcb8b","keyword":"疲劳","originalKeyword":"疲劳"},{"id":"a6184cd3-fb2c-4fcf-8c97-95c1c038dcb0","keyword":"加载方式","originalKeyword":"加载方式"}],"language":"zh","publisherId":"xyjsclygc200305004","title":"加载方式对Si3N4陶瓷疲劳特性的影响","volume":"32","year":"2003"},{"abstractinfo":"研究了不同温度范围单向拉伸加载方式对奥氏体不锈钢力学性能和组织演变的影响.结果表明,循环加卸载拉伸方式显著影响304不锈钢的力学性能:在高温拉伸变形时,不同加载方式所得到的力学性能相同;在0℃以下,循环加卸载方式导致试样的延伸率降低;而在室温条件下,循环加卸载拉伸能够最大程度地提高试样的强度和延伸率.通过对304不锈钢室温拉伸过程的原位观测证实,卸载过程导致能够有效激发形变诱发马氏体相变的形核和长大,从而使相变增塑效应增强,延迟缩颈及断裂的能力得以提高.","authors":[{"authorName":"徐勇","id":"8242d48b-e82e-45bc-be69-012637473557","originalAuthorName":"徐勇"},{"authorName":"张士宏","id":"ebefdbff-d250-449a-a42b-3ea0f53a84b2","originalAuthorName":"张士宏"},{"authorName":"程明","id":"a0cc71bd-12a6-4e59-9d98-d81964d8dbfc","originalAuthorName":"程明"},{"authorName":"宋鸿武","id":"ab34596c-acf3-4abc-8924-d51627b6ffea","originalAuthorName":"宋鸿武"},{"authorName":"王苏程","id":"1af12c62-e47e-4eff-ad4e-5435cf186354","originalAuthorName":"王苏程"}],"doi":"10.3724/SP.J.1037.2012.00769","fpage":"775","id":"133d5aff-3056-4ec0-92d0-dc4bcc6e5d05","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"b6304583-7ff1-4ad2-ac5c-3afb3ed1884a","keyword":"奥氏体不锈钢","originalKeyword":"奥氏体不锈钢"},{"id":"7dd02cb3-4c52-4412-9f46-66a7e421e279","keyword":"加载方式","originalKeyword":"加载方式"},{"id":"62631784-9267-42de-bccc-6e3805efc8d3","keyword":"循环加卸载拉伸","originalKeyword":"循环加卸载拉伸"},{"id":"e4f7f9a5-1ed6-4836-adfb-6733cbda40e3","keyword":"形变诱发马氏体","originalKeyword":"形变诱发马氏体"},{"id":"f32f5807-9fa3-4373-af90-251d436b29a3","keyword":"相变增塑效应","originalKeyword":"相变增塑效应"}],"language":"zh","publisherId":"jsxb201307002","title":"加载方式对奥氏体不锈钢力学性能和马氏体相变的影响","volume":"49","year":"2013"},{"abstractinfo":"采用阳极氧化的方法,以金属钛为基体在硫酸水溶液中于室温下制备了二氧化钛纳米孔薄膜.研究了电压施加方式对二氧化钛纳米孔薄膜的微观形貌及结构的影响.结果表明,二氧化钛纳米孔的结构与外加电压施加方式有很大关系,采用“连续加压至120-140V”方法可制备出孔径为141 nm,孔径分布最为均匀的二氧化钛纳米孔薄膜.","authors":[{"authorName":"李菲晖","id":"11ff629a-2d00-4564-bec2-9e8802c8b9c4","originalAuthorName":"李菲晖"},{"authorName":"陈磊","id":"3d90f723-daad-45c5-bea1-2ea41f13aaca","originalAuthorName":"陈磊"},{"authorName":"巩运兰","id":"f326dc4a-0eec-4827-9507-08964429c958","originalAuthorName":"巩运兰"},{"authorName":"李建颖","id":"4afb0fb2-891f-4f5a-82ba-68fa783cbde6","originalAuthorName":"李建颖"}],"doi":"10.3969/j.issn.1001-3849.2012.07.009","fpage":"38","id":"179f698f-a106-4679-af16-92f5d41ffd61","issue":"7","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"db70bbca-fc32-410e-86ef-b6654be4e0f8","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"bc6df02e-b4fb-4e12-9fad-e6614b9da60e","keyword":"纳米孔薄膜","originalKeyword":"纳米孔薄膜"},{"id":"a4f935a9-2a17-457d-8c0a-e71ea1d199d5","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"bc0c39ef-ad5f-4541-9965-44d962f1872d","keyword":"电压施加方式","originalKeyword":"电压施加方式"}],"language":"zh","publisherId":"ddjs201207009","title":"电压施加方式对阳极氧化TiO2纳米孔薄膜形貌的影响","volume":"34","year":"2012"},{"abstractinfo":"为了解电压在镁合金微弧氧化中的作用,本工作在双极性脉冲电源的恒流加载方式下,通过考察电压对氧化时间、膜层厚度及表面形貌的影响,研究电压对微弧氧化机理的影响。结果发现,当负电压为零,占空比20%和30%时,电压低于380V时所需的氧化时间要短于电压高于380 V时的氧化时间。当占空比30%,负电压为零和40 V时,电压低于340 V的氧化时间和膜层增长速率都小于电压高于340 V的;电压低于340 V时的膜层表面形貌优于340 V以上膜层。可见,微弧氧化过程中存在一个临界电压,微弧氧化过程分成两种情况,两种情况的微弧氧化机理不尽相同。","authors":[{"authorName":"王蕊","id":"21c412a2-ed6f-48de-85ea-4a2ab07ff837","originalAuthorName":"王蕊"},{"authorName":"马跃洲","id":"e107017f-44d5-4d5f-a519-11f3a36191ea","originalAuthorName":"马跃洲"},{"authorName":"陈明","id":"cf435648-d343-4047-9fbd-d5a53627ed32","originalAuthorName":"陈明"},{"authorName":"田庆涛","id":"d954beae-1ec2-4ca7-9f79-2db2732a032d","originalAuthorName":"田庆涛"}],"doi":"","fpage":"363","id":"e1e990d6-8453-48ac-87c2-abe66fc717bc","issue":"5","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"437eded2-d364-412d-9db5-32c4b853970b","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"9898154f-d8f9-4f1f-8dfe-4e99aa4ce3db","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"45048125-af71-4a79-aefb-1b7abdb3d304","keyword":"脉冲电源","originalKeyword":"脉冲电源"},{"id":"19e67ec3-4c1d-4da0-8b9f-0a571e94ce65","keyword":"氧化时间","originalKeyword":"氧化时间"},{"id":"7d15f273-b4fc-4bd0-a502-52d254338c52","keyword":"临界电压","originalKeyword":"临界电压"}],"language":"zh","publisherId":"fsyfh201105009","title":"不同电压下镁合金的微弧氧化行为","volume":"32","year":"2011"},{"abstractinfo":"研究了不同加载方式下TA15钛合金方坯先加载区、过渡区和后加载区的组织和力学性能.结果表明:只采用局部加载时,先加载区和后加载区的室温和高温性能优于过渡区的性能,各区的持久性能差别不大;采用先局部后整体的加载方式时,过渡区的室温和高温性能优于其他两个加载区,但过渡区的持久性能明显较差.只采用局部加载时,各区的组织性能优于先局部后整体加载时各区的组织性能.","authors":[{"authorName":"李志燕","id":"1e3b97ec-47fd-4e9a-9f56-9c5b15379800","originalAuthorName":"李志燕"},{"authorName":"黄旭","id":"a687f9aa-1ea4-460c-86f3-b0eb421cc5a3","originalAuthorName":"黄旭"},{"authorName":"李兴无","id":"967f6d65-3a48-40cb-946c-67e05f5397b5","originalAuthorName":"李兴无"},{"authorName":"齐立春","id":"a53d4772-2987-45ed-bbf4-1defb9e5fecd","originalAuthorName":"齐立春"}],"doi":"10.3969/j.issn.1007-2330.2010.03.021","fpage":"79","id":"7089b4f5-80c3-4d24-b34e-f540c259ef6f","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"c6ce1582-2f02-4bd8-8387-44a4973f1a07","keyword":"TA15钛合金","originalKeyword":"TA15钛合金"},{"id":"9d38d5ab-cdcc-4022-be42-516c0ad34e8a","keyword":"局部加载","originalKeyword":"局部加载"},{"id":"b1eac0cf-cd66-48cd-b95a-f69a849f31ab","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"e35865b5-dfa8-4c76-95f1-50858a21e56e","keyword":"过渡区","originalKeyword":"过渡区"},{"id":"6e284f0f-7704-451e-9b63-e2da2ff98bc3","keyword":"微观组织","originalKeyword":"微观组织"}],"language":"zh","publisherId":"yhclgy201003021","title":"TA15钛合金等温局部加载各加载区的组织和性能","volume":"40","year":"2010"},{"abstractinfo":"阈值电压(Vth)是液晶材料最重要的参数之一,主要根据液晶显示屏的驱动方式来设计.合适的Vth是LCD显示质量的重要保障.在制造和生产过程中,要尽量保证它的一致性,避免器件出现对比度不良或串扰等现象.结合生产过程中的实际情况及经常出现的问题,阐述了阈值电压的影响因素及设计使用中的注意事项.","authors":[{"authorName":"宋莉丽","id":"7af3e7dd-f1ca-4316-85df-9eb2ed2a4e91","originalAuthorName":"宋莉丽"},{"authorName":"于海峰","id":"cb8a2db4-4aae-4830-90bd-d08ffa07c666","originalAuthorName":"于海峰"},{"authorName":"李燕","id":"b0026555-834e-4c17-81a7-04b25a7a9d9c","originalAuthorName":"李燕"}],"doi":"10.3969/j.issn.1007-2780.2002.02.010","fpage":"139","id":"0797b202-1925-4977-8aab-8e467186a478","issue":"2","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"2fbd2c87-214e-44b2-8101-81320c935dc2","keyword":"液晶","originalKeyword":"液晶"},{"id":"a068742c-fab9-4773-8947-c67f9a84f091","keyword":"阈值电压","originalKeyword":"阈值电压"},{"id":"76ad8e95-0fdb-497e-b9bb-8817523d16ca","keyword":"方块电阻","originalKeyword":"方块电阻"},{"id":"92cee023-1c20-4e48-8d49-39e3cbab28da","keyword":"温度","originalKeyword":"温度"},{"id":"ddd814a3-78c6-4895-9e17-231835081ed4","keyword":"预倾角","originalKeyword":"预倾角"}],"language":"zh","publisherId":"yjyxs200202010","title":"阈值电压波动初探","volume":"17","year":"2002"}],"totalpage":1273,"totalrecord":12723}