{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"设计、冶炼了Cu-Mo和Cu-Mo-Cr系的3种成分的耐海水腐蚀钢,并轧制成20 mm厚钢板,然后测试了设计钢种的力学性能、耐海水腐蚀性能及焊接性能.96,240,336和500h盐雾加速腐蚀试验结果表明:与普通碳素钢(SM490A)相比,3种设计钢的耐海水腐蚀性能均有明显提高,且随着腐蚀时间的延长优势更明显.设计钢种的耐腐蚀性能随Cr含量增加而增加,当Cr质量分数为0.85%时,耐腐蚀性能比对比钢提高59.1%.Cr元素在内锈层的均匀富集有效阻碍了Cl的侵蚀,提高了耐腐蚀性能.Gleeble热模拟结果表明:不预热和焊后热处理,在焊后冷却速度为5~60℃/s时,焊接粗晶区的KV≥57J,揭示了设计钢种良好的焊接性能.","authors":[{"authorName":"郭慧英","id":"880c3371-6efd-4aa0-886d-d0b28d38fc64","originalAuthorName":"郭慧英"},{"authorName":"张宇","id":"bf60d73e-c2d7-48ca-a41f-8f35f7255ba9","originalAuthorName":"张宇"},{"authorName":"何玉春","id":"f1d4926f-7f8e-4052-8054-ed7d89d50372","originalAuthorName":"何玉春"},{"authorName":"许红梅","id":"a6375f8f-d693-4365-a70e-3a7e88772d1a","originalAuthorName":"许红梅"}],"doi":"","fpage":"71","id":"12bc103d-f327-4c27-a576-c18c2e3f0b0b","issue":"9","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"ecbc2863-b92d-4168-8d9e-1fa5a7603bd0","keyword":"低合金钢","originalKeyword":"低合金钢"},{"id":"820dfb3e-92ee-4a74-8ac9-eaec8c14fa53","keyword":"耐海水腐蚀钢","originalKeyword":"耐海水腐蚀钢"},{"id":"fdb9eccf-9e23-461b-9a12-376c51e82467","keyword":"盐雾试验","originalKeyword":"盐雾试验"},{"id":"c99ff117-055d-4a78-8533-69ad13c86500","keyword":"焊接性能","originalKeyword":"焊接性能"}],"language":"zh","publisherId":"gt201309013","title":"低合金耐海水腐蚀钢的开发","volume":"48","year":"2013"},{"abstractinfo":"以普碳钢为对比样,采用模拟海水全浸和间浸、盐雾、湿热等加速腐蚀实验并结合电化学测试技术研究了Cu-Cr-Mo系低合金耐海水腐蚀钢Q345C-NHY3的耐蚀性能.结果表明:在各种模拟环境条件下与碳钢相比Q345C-NHY3钢都具有较好的耐蚀性能.","authors":[{"authorName":"黄锦花","id":"1a5fa413-5d3b-4941-830c-bf2d6ee63d5d","originalAuthorName":"黄锦花"},{"authorName":"李自刚","id":"41498c8f-35db-4928-b0f9-5787b7f84a1d","originalAuthorName":"李自刚"},{"authorName":"钱余海","id":"6370a618-e83b-42c4-a43e-0ba0e492e96b","originalAuthorName":"钱余海"}],"doi":"10.3969/j.issn.1001-7208.2006.04.002","fpage":"6","id":"783330fa-ac06-4d08-8734-7d82de683104","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"76cbfa5d-a9eb-432c-b933-eae4dc11bb4b","keyword":"耐海水腐蚀钢","originalKeyword":"耐海水腐蚀钢"},{"id":"de008cef-ce7a-406f-ad02-a47d5a4373bb","keyword":"合金元素","originalKeyword":"合金元素"},{"id":"d4a10edb-a909-457f-b483-25958fc5db5f","keyword":"加速腐蚀实验","originalKeyword":"加速腐蚀实验"},{"id":"957434fb-b824-4788-bf15-2521690129be","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"}],"language":"zh","publisherId":"shjs200604002","title":"低合金耐海水腐蚀钢在模拟腐蚀环境下的耐蚀性能研究","volume":"28","year":"2006"},{"abstractinfo":"选择Ni-Cu-P和Cr-Cu-P两类典型的耐海水腐蚀钢, 在pH=10的3%(质量分数)NaCl溶液中进行极化实验, 比较了钢的点蚀诱发敏感性; 在3%海盐水中进行间浸挂片实验, 评价了钢的点蚀扩展速度; 利用OM, 电子探针(EPMA), SEM和XRD分析钢中夹杂物、腐蚀形貌和锈层的特征. 结果表明, Cr-Cu-P钢中的点蚀诱发敏感性要低于Ni-Cu-P, 且脱氧程度的差异不会影响到两类钢的耐点蚀性能. 挂片实验结果表明, 两类耐海水腐蚀钢的平均腐蚀速率接近, 但Cr-Cu-P钢的点蚀扩展速率明显大于Ni-Cu-P钢. 在酸化的蚀坑内, Ni提高基体的电位, 而Cr则降低基体的电位.锈层分析结果表明, 两类钢的内锈层组成均主要为Fe3O4, α-FeOOH和少量的非晶化合物, 但Cr-Cu-P钢表面的锈层比Ni-Cu-P钢更致密.","authors":[{"authorName":"曹国良李国明陈珊常万顺陈学群","id":"71071b96-6734-44d9-9b29-c113ca0b116e","originalAuthorName":"曹国良李国明陈珊常万顺陈学群"}],"categoryName":"|","doi":"10.3724/SP.J.1037.2009.00816","fpage":"748","id":"0a0bc0e3-a82c-48a1-b461-966e9fa58952","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"37cfabea-7793-476c-90c3-ac81d01b49d2","keyword":"耐海水腐蚀钢","originalKeyword":"耐海水腐蚀钢"},{"id":"cda0e617-78a1-4acf-b93d-a597eff5173c","keyword":" pitting","originalKeyword":" pitting"},{"id":"6288319d-6512-4213-8028-5a0286bc4494","keyword":" rust layer","originalKeyword":" rust layer"}],"language":"zh","publisherId":"0412-1961_2010_6_6","title":"典型耐海水腐蚀钢中Ni和Cr耐点蚀作用的比较","volume":"46","year":"2010"},{"abstractinfo":"选择Ni-Cu-P和Cr-Cu-P两类典型的耐海水腐蚀钢,在pH=10的3%(质量分数)NaCI溶液中进行极化实验,比较了钢的点蚀诱发敏感性;在3%海盐水中进行间浸挂片实验,评价了钢的点蚀扩展速度;利用OM,电子探针(EPMA),SEM和XRD分析钢中夹杂物、腐蚀形貌和锈层的特征.结果表明,Cr-Cu-P钢中的点蚀诱发敏感性要低于Ni-Cu-P,且脱氧程度的差异不会影响到两类钢的耐点蚀性能.挂片实验结果表明,两类耐海水腐蚀钢的平均腐蚀速率接近,但Cr-Cu-P钢的点蚀扩展速率明显大于Ni-Cu-P钢.在酸化的蚀坑内,Ni提高基体的电位,而Cr则降低基体的电位.锈层分析结果表明,两类钢的内锈层组成均主要为Fe3O4,α-FeOOH和少量的非晶化合物,但Cr-Cu-P钢表面的锈层比Ni-Cu-P钢更致密.","authors":[{"authorName":"曹国良","id":"23e66733-9964-47fa-8f9f-726d27b62003","originalAuthorName":"曹国良"},{"authorName":"李国明","id":"03f1e31d-bdf3-4fb2-9b90-1f6152c9b194","originalAuthorName":"李国明"},{"authorName":"陈珊","id":"5cb8f1f0-c8e9-4313-a5ce-09ace3b2742a","originalAuthorName":"陈珊"},{"authorName":"常万顺","id":"3876eb34-7e19-4fb1-a105-790cf4fcb3a8","originalAuthorName":"常万顺"},{"authorName":"陈学群","id":"fdedba95-908f-44f6-afa3-42618b8df240","originalAuthorName":"陈学群"}],"doi":"10.3724/SP.J.1037.2009.00816","fpage":"748","id":"fdc92e82-fa7c-4014-a98b-20ebffd48503","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"9597c162-b258-474a-85d5-c3dab2203c78","keyword":"耐海水腐蚀钢","originalKeyword":"耐海水腐蚀钢"},{"id":"83bc8aaa-3a95-4610-be18-34655afbf94b","keyword":"点蚀","originalKeyword":"点蚀"},{"id":"88168b33-a9f8-4dea-aa1b-070f323f1381","keyword":"锈层","originalKeyword":"锈层"}],"language":"zh","publisherId":"jsxb201006016","title":"典型耐海水腐蚀钢中Ni和Cr耐点蚀作用的比较","volume":"46","year":"2010"},{"abstractinfo":"获得了5种含铬低合金钢在海水中暴露1、2、4、8(7)年的腐蚀数据,讨论Cr对钢耐海水腐蚀的影响,铬钢的耐海水腐蚀性不仅与Cr的含量有关,还与其他复合合金元素有关。短期浸泡时,钢的耐海水腐蚀性随铬含量(无其他合金元素复合)增加而提高。长期浸泡,Cr对钢的耐海水腐蚀性有害,约1%Cr与Mo(-Al)复合对钢的耐海水腐蚀性的影响与Cr的影响没有左别大于2%Cr与Mo(-Al)复合大幅度提高钢在海水中短期浸泡的耐蚀性,并使耐蚀性逆转时间明显推迟.小于1%Cr与Mn-Cu、Cu-Si-V、Ni-Cu-Si、Ni-Mn等复合对钢的耐海水腐蚀性有害。 ","authors":[{"authorName":"黄桂桥","id":"549cbcc2-6dcc-44cd-8dfc-f1c071c81961","originalAuthorName":"黄桂桥"}],"categoryName":"|","doi":"","fpage":"86","id":"6397dadb-b317-4f32-a71c-4bf61217aa7e","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"fc666173-ad8e-40a6-9af0-b9d859054988","keyword":"钢","originalKeyword":"钢"},{"id":"7db34503-d4d2-48bc-bbe8-3fb2945cf8df","keyword":"steel","originalKeyword":"steel"},{"id":"32aa9347-46c2-4098-bc13-d0d45b8f5c1b","keyword":"seawater","originalKeyword":"seawater"}],"language":"zh","publisherId":"1002-6495_2000_2_14","title":"Cr对钢耐海水腐蚀性的影响","volume":"12","year":"2000"},{"abstractinfo":"获得了5种含铬低合金钢在海水中暴露1、2、4、8(7)年的腐蚀数据,讨论了Cr对钢耐海水腐蚀性的影响.铬钢的耐海水腐蚀性不仅与Cr的含量有关,还与其他复合合金元素有关.短期浸泡时,钢的耐海水腐蚀性随铬含量(无其他合金元素复合)增加而提高.长期浸泡,Cr对钢的耐海水腐蚀性有害.约1%Cr与Mo(-Al)复合对钢的耐海水腐蚀性的影响与Cr的影响没有明显差别.大于2%Cr与Mo(-Al)复合大幅度提高钢在海水中短期浸泡的耐蚀性,并使耐蚀性逆转时间明显推迟.小于1%Cr与Mn-Cu、Cu-Si-V、Ni-Cu-Si、Ni-Mn等复合对钢的耐海水腐蚀性有害.","authors":[{"authorName":"黄桂桥","id":"49e6601e-4814-42a0-93ab-c3e1ef81b31d","originalAuthorName":"黄桂桥"}],"doi":"10.3969/j.issn.1002-6495.2000.02.006","fpage":"86","id":"2b7ac490-c74f-43ec-b0c9-333e80ddc623","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"2b8c6040-4311-40f9-9d25-f359242ed837","keyword":"Cr","originalKeyword":"Cr"},{"id":"8cc6ac55-61ef-470b-bcbd-83eca8063716","keyword":"钢","originalKeyword":"钢"},{"id":"c20f7e5e-6ab3-4ae7-b1e4-5d3812de00ec","keyword":"海水","originalKeyword":"海水"},{"id":"f2d77ce0-20d7-4184-8ca5-acb91cf12f05","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"fskxyfhjs200002006","title":"Cr对钢耐海水腐蚀性的影响","volume":"12","year":"2000"},{"abstractinfo":"针对10MnNiCr钢、新型440 MPa船体钢,开展了钢的自然腐蚀电位测试、室内加速腐蚀试验,1年期北海海域裸钢海港挂片试验.试验结果表明,由于钢的合金成分不同,10MnNiCr钢表现出较好的耐海水腐蚀性能.","authors":[{"authorName":"邓贤辉","id":"f43463ef-c236-457f-9421-b5c9bbdd7e68","originalAuthorName":"邓贤辉"}],"doi":"","fpage":"50","id":"9cbf84a3-cc56-4eea-af98-cfbb379adcce","issue":"5","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"38f30346-21da-4fec-9fcf-3fd07a635398","keyword":"船体钢","originalKeyword":"船体钢"},{"id":"3f3b31c1-d705-44a8-995e-7582b2c7f8d7","keyword":"海水","originalKeyword":"海水"},{"id":"8c6c5d94-519a-479a-aac1-bceb38c2fb2c","keyword":"腐蚀性能","originalKeyword":"腐蚀性能"}],"language":"zh","publisherId":"clkfyyy201205013","title":"两种船体钢耐海水腐蚀性能对比","volume":"27","year":"2012"},{"abstractinfo":"通过显微夹杂物分析、室内间浸挂片试验和相关的电化学性能测试,对12CrNiMo 钢和35Cr钢的耐海水腐蚀性能进行了比较分析,结果表明:在海水介质中,12CrNiMo 钢比35Cr钢的耐海水腐蚀性能要好.两种钢化学成分及夹杂物类别、形态、分布和数量上的不同,是造成两者耐海水腐蚀性差异的主要原因.","authors":[{"authorName":"李玉荣","id":"533c4d77-2ebb-4972-bdc5-cea9e8337da3","originalAuthorName":"李玉荣"}],"doi":"10.3969/j.issn.1005-748X.2005.05.005","fpage":"196","id":"9faa3b7c-614d-469c-965e-d93608774548","issue":"5","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"636a5df3-d49b-48fe-b0e2-1800b96d9238","keyword":"12CrNiMo","originalKeyword":"12CrNiMo"},{"id":"7d611b4c-0ef1-4f8f-b7df-ae5cf9db04cf","keyword":"35Cr","originalKeyword":"35Cr"},{"id":"e0256ee0-225a-4d61-8ce0-d119c3acc3ee","keyword":"海水","originalKeyword":"海水"},{"id":"1216ea88-2bc5-4677-b8f7-b274acff4e23","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"fsyfh200505005","title":"12CrNiMo钢和35Cr钢的耐海水腐蚀性能比较分析","volume":"26","year":"2005"},{"abstractinfo":"针对船用E36钢、10CrNiCu钢,开展了钢的自然腐蚀电位测试、室内全浸加速腐蚀试验.结果表明,10CrNiCu钢具有较高的电位值及较低的平均腐蚀速率,表现出较好的耐海水腐蚀性能;其与E36钢连接时作为阴极受到E36钢的阳极保护,减慢了其腐蚀速率.","authors":[{"authorName":"杨延涛","id":"4c0b18ae-32f2-4f3a-8028-5befd6275dc3","originalAuthorName":"杨延涛"},{"authorName":"曲占元","id":"f79761ed-2aff-4b72-b9b6-95e50f964e01","originalAuthorName":"曲占元"},{"authorName":"刘刚","id":"d7512b31-a542-4b05-8796-a365432636fa","originalAuthorName":"刘刚"}],"doi":"","fpage":"22","id":"3b6caac9-9acc-4669-910c-7c5dd60b1123","issue":"4","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"f001bd93-e740-4cc2-8cbc-30ffeee499d2","keyword":"船体钢","originalKeyword":"船体钢"},{"id":"c77919ea-7d9e-40d8-afdf-132e64093718","keyword":"海水","originalKeyword":"海水"},{"id":"926f64ca-7b0f-4e89-962f-63be55e5de19","keyword":"腐蚀性能","originalKeyword":"腐蚀性能"}],"language":"zh","publisherId":"clkfyyy201304005","title":"船用E36钢和10CrNiCu钢耐海水腐蚀性能研究","volume":"28","year":"2013"},{"abstractinfo":"通过盐雾试验、海水浸泡试验、实际海域挂片试验及应力腐蚀试验结合表面形貌观察和显微组织分析,研究了新型无磁高强度A10不锈钢及其对比材料917钢的耐海水腐蚀性能.结果表明:A10不锈钢在海水中全面腐蚀速率低,腐蚀试样表面光亮、无锈、无点腐蚀、无裂纹;而在相同条件下,917钢锈蚀严重.A10不锈钢在海水中的耐蚀性远优于917钢的,且具有优良的抗应力腐蚀开裂性能.","authors":[{"authorName":"李玉稳","id":"58269f37-025d-402c-9ffd-e1dc4c29d927","originalAuthorName":"李玉稳"},{"authorName":"黄春波","id":"4ee89e87-d72f-4d09-b2c0-262bfdc58cb7","originalAuthorName":"黄春波"},{"authorName":"高余顺","id":"afea882f-afcb-425c-b876-7b7a4104022f","originalAuthorName":"高余顺"},{"authorName":"薛春","id":"375c7c6c-85c2-45fd-a147-d085b51925b1","originalAuthorName":"薛春"},{"authorName":"刘新桥","id":"a1f2a7a6-6a67-469f-9061-f340dc70dfcd","originalAuthorName":"刘新桥"}],"doi":"10.11973/fsyfh-201606005","fpage":"458","id":"5f2322ea-1296-4273-b0f5-675a92d70581","issue":"6","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"4066d558-24f6-426b-9565-34e12e281711","keyword":"A10不锈钢","originalKeyword":"A10不锈钢"},{"id":"c358b24f-e284-4f62-8a93-79a0381d5a5b","keyword":"917钢","originalKeyword":"917钢"},{"id":"c77be323-61bc-4c94-9903-747fe2748ee0","keyword":"耐海水腐蚀性能","originalKeyword":"耐海水腐蚀性能"}],"language":"zh","publisherId":"fsyfh201606005","title":"新型无磁高强度A10不锈钢的耐海水腐蚀性能","volume":"37","year":"2016"}],"totalpage":3816,"totalrecord":38153}