{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"模拟了海底管线的腐蚀情况,并利用极化曲线及电化学阻抗技术,研究了试验六个月情况下试片的腐蚀规律。结果表明,试样在开放的海水介质中靠近裂缝处腐蚀速率较快,远离裂缝处腐蚀速率相对较慢。而在模拟海底的试验环境下,管线腐蚀规律与开放海水中测量的结果相反,即靠近裂缝处腐蚀相对较慢,,远离裂缝处腐蚀相对较快。","authors":[{"authorName":"姜信德","id":"2bedec56-acdb-47fc-b19b-f623dc1a1fd0","originalAuthorName":"姜信德"},{"authorName":"李言涛","id":"1b896091-88aa-475c-8971-2f8bf6f5f564","originalAuthorName":"李言涛"},{"authorName":"杜芳林","id":"fbebf2de-4e5c-46e8-bd9f-74e77f02e2c2","originalAuthorName":"杜芳林"},{"authorName":"侯保荣","id":"047a2a16-9bfd-4fcd-8eef-5a7769a37553","originalAuthorName":"侯保荣"}],"doi":"","fpage":"601","id":"8d3c5dcb-8ee5-48a1-a5b9-fa2bb9acab82","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"424e89f6-cb38-4974-9a1a-ba2c5b0e53a6","keyword":"海底管线","originalKeyword":"海底管线"},{"id":"db51179f-54c8-48fd-a270-6bd1f2a47d06","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"6ed19a12-e593-4d2e-aee4-48aeff9e9ee8","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"988fdda6-db93-4735-ad5a-624a35010dd4","keyword":"电化学试验","originalKeyword":"电化学试验"}],"language":"zh","publisherId":"fsyfh201108004","title":"电化学方法研究海底管线腐蚀行为","volume":"32","year":"2011"},{"abstractinfo":"采用失重法、电化学阻抗谱、极化曲线及量子化学计算研究了月桂酰两性基单乙酸钠在4.0%(质量分数,下同)柠檬酸溶液中对Q235碳钢的缓蚀行为.结果表明,月桂酰缓蚀剂具有较好的缓蚀效果,当其质量分数达到0.8%时,缓蚀率达到78.44%.电化学试验表明,该缓蚀剂在金属表面以吸附的形式形成一种覆盖膜,主要是以阳极抑制为主的混合型缓蚀剂.通过量子化学计算了缓蚀剂分子的LUMO、HOMO轨道能量,得出缓蚀剂羧基上的氧原子是吸附成膜的活性位点.","authors":[{"authorName":"聂凯斌","id":"ebd070ce-acce-4879-93e4-95cb713c5b3b","originalAuthorName":"聂凯斌"},{"authorName":"刘松慧","id":"5738fe77-3a19-48de-a458-49ef8b603c2e","originalAuthorName":"刘松慧"},{"authorName":"张利中","id":"e5b0ea69-3475-45b8-a58c-11e950d9ab62","originalAuthorName":"张利中"},{"authorName":"王玉娜","id":"038f2e6f-f22f-482d-a50a-a5fc1a643e10","originalAuthorName":"王玉娜"},{"authorName":"张心华","id":"743121c1-91a0-47ad-b72b-1b4a19f4d706","originalAuthorName":"张心华"},{"authorName":"董万田","id":"bbb44173-8480-45f4-a208-7fd07fc8676b","originalAuthorName":"董万田"},{"authorName":"廖强强","id":"3fdefd32-4edb-4deb-b4c3-13b0c57f87ae","originalAuthorName":"廖强强"}],"doi":"10.11973/fsyfh-201701008","fpage":"35","id":"8b1fc267-cfcb-4fdb-ae55-f969c3bb675f","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"352745e3-bcb1-4ca3-8949-1dacc8748038","keyword":"月桂酰缓蚀剂","originalKeyword":"月桂酰缓蚀剂"},{"id":"657d5236-f1a9-4039-8548-3bf2f8eddc4e","keyword":"Q235碳钢","originalKeyword":"Q235碳钢"},{"id":"b9ccb7c8-ec78-456a-ad76-988b75e22cfb","keyword":"电化学试验","originalKeyword":"电化学试验"},{"id":"4aad9d0e-bb97-4f3d-996b-7395c0d5c4f9","keyword":"缓蚀率","originalKeyword":"缓蚀率"},{"id":"6554ff1b-dcdb-41bf-a4e0-88fbf15eca8d","keyword":"量子化学计算","originalKeyword":"量子化学计算"}],"language":"zh","publisherId":"fsyfh201701008","title":"月桂酰缓蚀剂在柠檬酸介质中对Q235碳钢的缓蚀行为","volume":"38","year":"2017"},{"abstractinfo":"与热镀锌相比,冷镀锌施工便捷,且成本更低.然而,现有冷镀锌产品涂层多孔、易起泡.为此,制备了一种冷镀锌钢板.通过扫描电镜(SEM)观察表面形貌,划格试验对附着性进行检测,循环盐雾腐蚀和电化学试验对耐蚀性进行了检测和研究.结果表明:该冷镀锌层钢板附着力较好,耐蚀性能优良.","authors":[{"authorName":"刘灿楼","id":"f03f5010-4bc3-4593-8ed3-50f80b4d44bd","originalAuthorName":"刘灿楼"},{"authorName":"刘昕","id":"c6404ff0-b93a-4b22-919c-5f11cac94980","originalAuthorName":"刘昕"},{"authorName":"江社明","id":"3daec76b-55d2-46f5-af84-1675c07890d2","originalAuthorName":"江社明"},{"authorName":"刘秋元","id":"aa0d0100-59df-4319-b3b2-e28275b6f681","originalAuthorName":"刘秋元"},{"authorName":"俞钢强","id":"ed2408ba-d789-4373-88c4-9923bb6af847","originalAuthorName":"俞钢强"},{"authorName":"张启富","id":"0334c283-57dc-4291-8dd7-52db34fef8da","originalAuthorName":"张启富"}],"doi":"","fpage":"52","id":"f0d48a8f-9cd1-4569-a0a1-7b06a7071bb6","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"ff14a1c7-cec8-416f-9471-0b59824c0439","keyword":"冷镀锌","originalKeyword":"冷镀锌"},{"id":"9948ce8d-bab2-449a-9ace-24798aea20b2","keyword":"热镀锌","originalKeyword":"热镀锌"},{"id":"93ebd44c-d21d-4f54-88f8-4dede7c0509f","keyword":"循环盐雾试验","originalKeyword":"循环盐雾试验"},{"id":"a3484482-b628-44f2-b304-d6912b4df0c8","keyword":"电化学试验","originalKeyword":"电化学试验"},{"id":"57f34de8-d866-49bc-8b76-c5b33106d39a","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clbh201509016","title":"一种冷镀锌层的耐蚀性能","volume":"48","year":"2015"},{"abstractinfo":"为提高铝合金涂膜的结合力及耐蚀性,在铝合金表面制备了锆盐转化膜.通过盐雾试验电化学试验、膜微观结构与涂膜结合力测试,研究了锆盐转化膜的耐蚀性与漆膜的结合力,并与通用的铬酸盐转化膜和无铬转化膜进行对比.结果表明:锆盐转化膜120 h盐雾试验的耐蚀等级达8级,在3.5%NaCl溶液中铝合金的自腐蚀电位明显正移,腐蚀电流密度大大降低;转化膜层均匀多孔,含有Al,O,Zr和Mg元素,且与漆膜结合力良好.","authors":[{"authorName":"王春霞","id":"9c3783d9-493c-4fa8-a689-78c0e719b4e7","originalAuthorName":"王春霞"},{"authorName":"杨晓燕","id":"7a4c333b-95bb-491b-881c-44e2d9d715c9","originalAuthorName":"杨晓燕"}],"doi":"","fpage":"36","id":"17130828-a90d-4de5-9797-32f80cd0450f","issue":"2","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"c28f2a58-5926-4488-8aba-1e50f60ca99f","keyword":"锆盐转化膜","originalKeyword":"锆盐转化膜"},{"id":"22243df5-b959-4816-901d-9e34f952fa4c","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"0ba3e18d-3175-4316-bf3a-49f61f0a3639","keyword":"盐雾试验","originalKeyword":"盐雾试验"},{"id":"f7407fcb-f861-45be-b048-3a81176dbd7f","keyword":"电化学试验","originalKeyword":"电化学试验"},{"id":"0e923b09-12de-4d83-92c2-0f1a90b18cbd","keyword":"涂膜","originalKeyword":"涂膜"},{"id":"fd2c8b0b-12ab-4f68-b491-c72954787672","keyword":"结合力","originalKeyword":"结合力"}],"language":"zh","publisherId":"clbh201002011","title":"铝合金表面锆盐转化膜的制备及其性能","volume":"43","year":"2010"},{"abstractinfo":"为了提高镀锌层的耐蚀性,在纯锌浴中加入质量分数小于0.5%的Ni,V,Al,Mg元素,制备了热浸Zn-Al-Mg-Ni-V合金镀层.利用扫描电镜(SEM)、能谱分析对镀层组织、结构成分进行观察和分析,通过中性盐雾试验电化学试验将热浸Zn-Al-Mg-Ni-V合金镀层与纯锌镀层的耐蚀性进行对比.结果表明:热浸Zn-Al-Mg-Ni-V合金镀层的耐蚀性较传统镀锌层的有了很大提高,镀层主体结构没有发生明显变化.","authors":[{"authorName":"刘灿楼","id":"3af2f74c-9d92-48b0-b69e-034e4fbe2718","originalAuthorName":"刘灿楼"},{"authorName":"江社明","id":"3107c873-f3f1-41f2-9065-f69be7cb818b","originalAuthorName":"江社明"},{"authorName":"刘昕","id":"d1a728fe-8f05-4af8-b8fb-f016034bd309","originalAuthorName":"刘昕"},{"authorName":"刘秋元","id":"8d0b12c4-d814-4ca5-b444-a580183f9e9b","originalAuthorName":"刘秋元"},{"authorName":"俞钢强","id":"80784ffc-8209-4385-9dbd-639ffe499217","originalAuthorName":"俞钢强"},{"authorName":"张启富","id":"d7f40210-f9e6-40f4-a414-02191bd8b3cf","originalAuthorName":"张启富"}],"doi":"","fpage":"56","id":"d4423114-aea9-47cf-ac80-ebd8e1b51a40","issue":"9","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"36462476-4ee6-4424-be73-86a6c94c2465","keyword":"热镀锌","originalKeyword":"热镀锌"},{"id":"152e6175-48ba-4117-860b-a7181032b0a2","keyword":"合金镀层","originalKeyword":"合金镀层"},{"id":"95d77c53-c5c8-41dc-9d28-5ed42cab2d0f","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"267fbe54-b890-48df-9626-028da36763f8","keyword":"电化学试验","originalKeyword":"电化学试验"}],"language":"zh","publisherId":"clbh201509018","title":"热浸镀Zn-Al-Mg-Ni-V合金镀层的组织及耐蚀性","volume":"48","year":"2015"},{"abstractinfo":"通过室内挂片和电化学测试试验,结合微观分析,比较了手工焊和埋弧焊工艺制备的10Ni2CrMoV钢焊接接头的腐蚀特征,讨论了相关因素的影响.结果表明:两种工艺的焊接接头均以焊缝金属的耐蚀性最差,热影响区的耐蚀性最好;接头各区中的化学成分和微观组织的差别,是导致接头各区耐蚀性差异的主要因素;埋弧焊接头的耐蚀性优于手工焊接头的,焊接过程中输入的线能量较高是主要原因.","authors":[{"authorName":"孔小东","id":"ee388f95-b3e0-4d73-a550-cc5279e5f3b8","originalAuthorName":"孔小东"},{"authorName":"杨明波","id":"b5dff7bf-690b-41a3-9e23-a70565340e73","originalAuthorName":"杨明波"},{"authorName":"朱梅五","id":"95cc7eb8-732d-43a9-b88d-d6e5abb21543","originalAuthorName":"朱梅五"}],"doi":"10.3969/j.issn.1003-1545.2010.04.001","fpage":"1","id":"b227ec9f-006e-43a6-9770-aa39bc817774","issue":"4","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"e3233bd1-2e9a-4077-98d8-6aa09e8447bb","keyword":"低合金钢","originalKeyword":"低合金钢"},{"id":"5f809545-564d-4193-a217-a153238f0100","keyword":"焊接接头","originalKeyword":"焊接接头"},{"id":"6c381f69-8dc9-480b-b0fc-462fe2fb0f7c","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"a0cfcd45-571b-4a85-991c-864f74c50c66","keyword":"焊接工艺","originalKeyword":"焊接工艺"},{"id":"f5cebd54-4117-459e-9ba7-014c976abcd4","keyword":"电化学试验","originalKeyword":"电化学试验"}],"language":"zh","publisherId":"clkfyyy201004001","title":"10Ni2CrMoV钢焊接接头腐蚀特性研究","volume":"25","year":"2010"},{"abstractinfo":"对带氧化皮钢筋和带锈钢筋以及裸表面钢筋进行了电化学试验,研究不同表面的钢筋在模拟混凝土溶液[饱和Ca(OH)2溶液]中的腐蚀行为及钝化规律.结果表明,对于稳定后的自腐蚀电位,裸表面钢筋最高,带氧化皮表面钢筋次之,带锈表面最低;随着pH的降低,三种表面钢筋的钝化性能都随之降低,带氧化皮钢筋和裸表面钢筋的钝化能力明显高于带锈钢筋,测定了临界钝化pH,裸表面钢筋的临界钝化pH为11.2,带氧化皮钢筋的为11.0,而带锈钢筋的临界钝化pH为12.4,说明在pH降低的情况下,当带锈钢筋开始发生腐蚀时,裸表面钢筋和带氧化皮钢筋依旧可以保持钝化;随着氯离子浓度升高,带氧化皮表面钢筋和裸表面钢筋钝化性能都随之降低,测定的临界钝化浓度也大致相同,为0.03 mol/L,极小量氯离子浓度即可导致带锈钢筋去钝化,临界值为0.01 mol/L.","authors":[{"authorName":"陈杉檬","id":"0e7179c5-e603-41c9-9159-07c7503c826f","originalAuthorName":"陈杉檬"},{"authorName":"曹备","id":"3994f80d-dd2b-479c-99fd-44ddf7f4f7e1","originalAuthorName":"曹备"},{"authorName":"马珂","id":"06a58802-a7c5-4a41-b33f-3c0fbfcd5993","originalAuthorName":"马珂"}],"doi":"","fpage":"808","id":"ae713ab0-3f47-44ce-82aa-7a28f95da509","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"340a1ad4-83ea-4e7b-8c5a-ff7ced7ad667","keyword":"钢筋","originalKeyword":"钢筋"},{"id":"62ac393b-0f8c-4e2f-9bfa-5a432375a9d2","keyword":"电化学试验","originalKeyword":"电化学试验"},{"id":"929d16f8-d30c-4eab-9eed-d4afc7df8d94","keyword":"钝化","originalKeyword":"钝化"},{"id":"a144c704-58db-4815-aebb-907c54ed4c50","keyword":"pH","originalKeyword":"pH"},{"id":"829d47ef-c1e9-43f6-936f-f720a0d49a41","keyword":"氯离子浓度","originalKeyword":"氯离子浓度"}],"language":"zh","publisherId":"fsyfh201408011","title":"pH及Cl-对不同表面钢筋钝化行为的影响","volume":"35","year":"2014"},{"abstractinfo":"为了研究不同表面处理工艺下压铸镁合金涂层的抗腐蚀性能,通过浸泡腐蚀和电化学腐蚀的方法,比较了微弧氧化和无铬化学氧化等表面处理试样的耐蚀性.结果表明,无铬化学氧化和微弧氧化处理能显著提高镁合金表面耐蚀性,而以微弧氧化处理更优;且两种处理方法覆盖层对孔洞、裂纹不敏感.根据交流阻抗图谱.拟合得到了微弧氧化、无铬化学氧化和未处理三种试样电化学腐蚀时体系的等效电路,拟合结果与实测结果吻合.XRD分析表明这两种处理方法得到的覆盖层中主体相均为Mg3Al2Si3O12等含硅的尖晶石型氧化物和Mg0.36Al2.44O4、MgAl2O4等不舍硅的镁、铝复合氧化物,有利于提高镁合金耐蚀性.","authors":[{"authorName":"张家锋","id":"e837157d-93b3-42ed-a436-f23c5441a650","originalAuthorName":"张家锋"},{"authorName":"张新平","id":"358e74fc-1b6a-41c2-a027-2c999d774d1a","originalAuthorName":"张新平"},{"authorName":"许庆彦","id":"d994910d-c3cf-44d5-ab39-98e4126e030d","originalAuthorName":"许庆彦"},{"authorName":"熊守美","id":"cc48cf45-7144-4948-a73a-6373eaab9ebf","originalAuthorName":"熊守美"},{"authorName":"柳百成","id":"f147195f-9377-45bd-b6fb-29a4ed5fb16b","originalAuthorName":"柳百成"}],"doi":"10.3969/j.issn.1005-0299.2008.04.032","fpage":"573","id":"89fd126e-ca4e-438e-a151-fccf1a908431","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"c0baf7b8-f10d-4757-9691-cd5be022af3a","keyword":"压铸镁合金","originalKeyword":"压铸镁合金"},{"id":"f1e4ed28-e00b-44e7-8757-c4bdddb17dee","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"2ec391f5-56ee-44ab-83f0-807a979d0531","keyword":"无铬化学氧化","originalKeyword":"无铬化学氧化"},{"id":"99720370-079a-4d4d-98ed-a5d17275dbad","keyword":"浸泡试验","originalKeyword":"浸泡试验"},{"id":"bf251349-db29-42e9-9f9f-9beb758180c7","keyword":"电化学试验","originalKeyword":"电化学试验"},{"id":"353300fe-688f-4eef-a1ad-b54579543da8","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clkxygy200804032","title":"不同表面处理工艺压铸镁合金涂层耐蚀性研究","volume":"16","year":"2008"},{"abstractinfo":"采用动电位极化曲线和电化学阻抗谱(EIS)的方法研究了AZ91D镁合金在不同pH值的模拟酸雨溶液中的腐蚀行为,并用扫描电镜观察了试样腐蚀后的表面形貌.结果表明:随着溶液pH值升高,AZ91D镁合金的极化电阻变大,腐蚀电流密度减小;当pH值为2.7和3.0时,EIS由两个容抗弧组成,随着pH值的继续升高,EIS转变为单一容抗弧,镁合金表面形成了完整的表面膜,对基体金属具有一定的保护性;在模拟酸雨溶液中AZ91D镁合金整个表面受到腐蚀,腐蚀程度随着pH值的升高而变小,白色腐蚀产物主要由镁、铝、硫和氧元素组成.","authors":[{"authorName":"胡婷婷","id":"293a21f0-70a2-4cd6-8a4d-1e14d0674ea8","originalAuthorName":"胡婷婷"},{"authorName":"向斌","id":"dd7db4d6-8da4-4658-b672-512c6272dcd1","originalAuthorName":"向斌"},{"authorName":"左秀丽","id":"e3c29d67-08fe-4cbb-8940-064778368833","originalAuthorName":"左秀丽"},{"authorName":"陈文","id":"191b6329-f63a-4ed9-9d41-7f429e116e8a","originalAuthorName":"陈文"}],"doi":"","fpage":"477","id":"710d728a-647d-4474-adb7-4730ab666be3","issue":"7","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"ba834879-3e87-4881-ba30-cc9a36147be1","keyword":"AZ91D镁合金","originalKeyword":"AZ91D镁合金"},{"id":"05355068-7d30-47f9-8d21-692e40937c46","keyword":"模拟酸雨","originalKeyword":"模拟酸雨"},{"id":"2b167fc9-6ef8-4fab-9a4b-4df78fad3fb9","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"5f013a6b-e0a7-40e6-ab79-5ed61bd8d919","keyword":"电化学试验","originalKeyword":"电化学试验"}],"language":"zh","publisherId":"fsyfh200907011","title":"AZ91D镁合金在模拟酸雨溶液中的腐蚀行为","volume":"30","year":"2009"},{"abstractinfo":"为解决胜利油田东营压气站因受硫腐蚀影响而导致的压缩机组腐蚀和磨损问题,研制了新型混合抑制型TD-02缓蚀剂,并进行了压气站现场旁路试验和试运行试验.结果表明:TD-02缓蚀剂具有良好的缓蚀效果,加注后试验钢表面呈光亮黑色,添加缓蚀剂后高压机轴的磨损得到了显著抑制,达到了预期的效果.","authors":[{"authorName":"韩烨","id":"418ec118-31e9-477f-9ad6-0592c870e6db","originalAuthorName":"韩烨"},{"authorName":"崔振铎","id":"3d42b090-f663-46c9-933a-80b9dc0f71df","originalAuthorName":"崔振铎"},{"authorName":"刘兆增","id":"b7c8c0f0-ec3a-46bd-ae20-bcc461171164","originalAuthorName":"刘兆增"},{"authorName":"魏强","id":"1cddb5d1-dd98-4d10-93ac-0c1678cd2ad6","originalAuthorName":"魏强"},{"authorName":"巴林","id":"a0acdd43-3a5c-4b45-a610-e1e9cd626d00","originalAuthorName":"巴林"},{"authorName":"陈兆龙","id":"f9ea63fc-1b9b-4932-ae27-ac9d9c9aa5bd","originalAuthorName":"陈兆龙"},{"authorName":"沈健","id":"121adfff-e783-428d-93d2-dc904f578003","originalAuthorName":"沈健"},{"authorName":"范兆存","id":"1cd0eeb6-6c80-4b36-97c5-bc1e29fda125","originalAuthorName":"范兆存"},{"authorName":"朱胜利","id":"01602a81-69bb-460e-8bcd-c12eb1ff0388","originalAuthorName":"朱胜利"}],"doi":"","fpage":"26","id":"0188bf3c-d6f0-4d1e-a8a9-a46512835dfe","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"40b94363-7fc3-4a00-9e76-06fc5a3baa9a","keyword":"硫腐蚀","originalKeyword":"硫腐蚀"},{"id":"1a043d85-14bc-400a-bc10-998c985d86a4","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"16dbddbb-9fae-4713-a9cd-743f431f4d82","keyword":"现场试验","originalKeyword":"现场试验"},{"id":"00a09f95-0fc7-42cf-bdf5-ad81d525ab4e","keyword":"电化学试验","originalKeyword":"电化学试验"},{"id":"613120fe-7ee0-4a29-b26f-7ed52e184094","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"2b2bc040-e7c1-4a06-9ddf-60ce10c47cf9","keyword":"压气站","originalKeyword":"压气站"}],"language":"zh","publisherId":"jxgccl201304007","title":"压气站硫腐蚀TD-02缓蚀剂的制备与应用","volume":"37","year":"2013"}],"totalpage":5372,"totalrecord":53718}