{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以ZrB2-SiC-ZrC复相超高温陶瓷为研究对象,对X射线衍射的K值法、二次电子像结合背散射电子像、电子背散射衍射结合能谱面扫描三种相组成的定量分析方法进行了比较,结果显示K值法使用简单、方便;SEM的两种定量方法不仅可以定量分析相组成,还能反映相分布与相关系.三种定量方法的结果较一致,均显示该复相陶瓷实际相组成远远偏离反应烧结设计相组成,其中,ZrO2杂质相实际含量多于5vol%,ZrC相含量远低于理论值5vol%,K值法显示其含量甚至低于1vol%.相组成的定量分析为进一步开展微结构研究及复合材料设计提供了必要的技术基础.","authors":[{"authorName":"郑强","id":"30fdf3a9-0ff3-48ee-b41c-922174edc0a0","originalAuthorName":"郑强"},{"authorName":"王贤浩","id":"b4b1f92e-1b78-41aa-ba93-3f79a81151e9","originalAuthorName":"王贤浩"},{"authorName":"邢娟娟","id":"aa41386f-347b-4513-97c7-14f78b6ffc51","originalAuthorName":"邢娟娟"},{"authorName":"顾辉","id":"aa69cfe9-8356-4dc2-9343-13d5ad46c8ee","originalAuthorName":"顾辉"},{"authorName":"张国军","id":"b526010b-6a34-4a18-a101-dee2f6fa5f9d","originalAuthorName":"张国军"}],"doi":"10.3724/SP.J.1077.2013.12334","fpage":"358","id":"e4e5690a-1fa8-4660-be95-9094cd29fe36","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"203eb1e0-6e67-4135-967d-977b5274f87f","keyword":"复相超高温陶瓷","originalKeyword":"复相超高温陶瓷"},{"id":"9842ef04-744f-4eb5-b69d-274e9fcba411","keyword":"相组成定量分析","originalKeyword":"相组成定量分析"},{"id":"dc861f6c-0032-41a0-9e05-b4476e9ff62a","keyword":"X射线衍射","originalKeyword":"X射线衍射"},{"id":"9af832ea-9002-41e6-9cfd-cdff4fecda7a","keyword":"扫描电镜","originalKeyword":"扫描电镜"}],"language":"zh","publisherId":"wjclxb201304002","title":"ZrB2-SiC-ZrC复相超高温陶瓷相组成的定量分析","volume":"28","year":"2013"},{"abstractinfo":"综述了超高温难熔金属硼化物/碳化物复相陶瓷材料的研究现状,分析了目前存在的问题,提出了今后的发展方向.","authors":[{"authorName":"许春来","id":"e4f2c0f6-cfe5-4143-b1f2-44aaae811b04","originalAuthorName":"许春来"},{"authorName":"石晓斌","id":"8d00bbcd-772b-4fbb-aa76-e2126fc96339","originalAuthorName":"石晓斌"}],"doi":"10.3969/j.issn.1007-2330.2011.02.004","fpage":"9","id":"cb6dcb3a-daa0-402c-8943-26f6713c8751","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"c7fd7ead-a61b-4453-b87c-8ac4950e49f4","keyword":"超高温","originalKeyword":"超高温"},{"id":"bab5cd24-600b-4c27-a8fe-635e408fe8fb","keyword":"复相陶瓷材料","originalKeyword":"复相陶瓷材料"},{"id":"fd75d3e0-073e-4733-ab9c-1587f0b2ac95","keyword":"硼化物","originalKeyword":"硼化物"},{"id":"30652580-c902-4e48-8208-6e078d66b9a7","keyword":"碳化物","originalKeyword":"碳化物"}],"language":"zh","publisherId":"yhclgy201102004","title":"飞行器热防护系统用超高温硼化物/碳化物复相陶瓷材料研究","volume":"41","year":"2011"},{"abstractinfo":"超高温陶瓷在极端环境中能够保持稳定的物理和化学性质,被认为是高超声速飞行器和大气层再入飞行器鼻锥和前缘最有前途的候选热防护材料.本文系统评述了超高温陶瓷(主要是过渡金属硼化物、碳化物和氮化物)在粉体合成、致密化、力学性能等方面的研究进展.对超高温陶瓷研究中存在的一些问题作出初步总结,希望对超高温陶瓷的进一步研究和应用起到积极的推动作用.","authors":[{"authorName":"郭强强","id":"7a99cc83-2c07-43a1-b158-8d261ce25ae1","originalAuthorName":"郭强强"},{"authorName":"冯志海","id":"eb44ebf5-59c5-4848-9e0f-c24cc2eaf724","originalAuthorName":"冯志海"},{"authorName":"周延春","id":"0f66aa7d-4ba7-4352-b721-d5ec10eff90c","originalAuthorName":"周延春"}],"doi":"10.3969/j.issn.1007-2330.2015.05.001","fpage":"1","id":"e1c0ccd7-2c1a-4a4b-a5d1-cc2db857cbb2","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"a7f8dee5-f888-4661-b333-a4a3c88e7487","keyword":"超高温陶瓷","originalKeyword":"超高温陶瓷"},{"id":"b689aaff-b014-4a1f-8b85-f9017c8285c6","keyword":"粉体合成","originalKeyword":"粉体合成"},{"id":"190d2300-2cfd-43ee-a363-8d339ef2a220","keyword":"致密化","originalKeyword":"致密化"},{"id":"59bc026b-ff82-4caa-b1fc-02147ad57dea","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"yhclgy201505001","title":"超高温陶瓷的研究进展","volume":"45","year":"2015"},{"abstractinfo":"研究了ZrB2-20vol%SiC超高温陶瓷在空气气氛中的氧化行为,分析了氧化温度、氧分压和氧化时间等对硅酸锆形成和晶体生长过程的影响,提出了ZrB2-SiC超高温陶瓷氧化过程中硅酸锆相的形成机制.热力学计算结果表明,硅酸锆相的形成与高温下SiC的活性氧化有关.实验结果表明,常压氧化过程中,硅酸锆的形成可分为两个阶段,(Ⅰ)形核,这一过程与SiC的活性氧化有关;(Ⅱ)晶体生长,随着氧化时间的延长,氧化后形成的富硅玻璃相与氧化锆在硅酸锆晶核处反应,晶粒进一步长大.研究表明,在1500℃氧化90min后,硅酸锆的晶粒尺寸达到100μm左右.","authors":[{"authorName":"高栋","id":"639e1d4c-07d7-4fd7-b968-fc79097a894a","originalAuthorName":"高栋"},{"authorName":"张跃","id":"8eb9156a-8a62-48bf-84b3-96d8795a4bac","originalAuthorName":"张跃"},{"authorName":"许春来","id":"d7af043c-d42a-45dc-8f6e-43d4a389893c","originalAuthorName":"许春来"},{"authorName":"宋扬","id":"da3d7ec5-3678-44a6-8763-48c43ac043ff","originalAuthorName":"宋扬"},{"authorName":"石晓斌","id":"e44ca8b7-4381-4925-a2c1-5be8b4254345","originalAuthorName":"石晓斌"}],"doi":"10.3724/SP.J.1077.2011.00433","fpage":"433","id":"7610b14e-8a10-4446-b6c7-7e612549519e","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"df76b35c-752f-4af3-9cdb-3fbb106bb7fe","keyword":"硼化锆","originalKeyword":"硼化锆"},{"id":"a488d892-97fa-48e3-acda-100735239fee","keyword":"碳化硅","originalKeyword":"碳化硅"},{"id":"39bec669-9d07-4340-be39-424f51668443","keyword":"硅酸锆","originalKeyword":"硅酸锆"},{"id":"7f6a6bbc-1447-4529-bef8-e270ffe28a82","keyword":"活性氧化","originalKeyword":"活性氧化"}],"language":"zh","publisherId":"wjclxb201104017","title":"ZrB2-SiC超高温陶瓷氧化过程中ZrSiO4相形成机制研究","volume":"26","year":"2011"},{"abstractinfo":"对超高温陶瓷作了简要介绍,综述了先驱体浸渍裂解( PIP)、反应熔体浸渗(RMI)、化学气相渗透(CVI)、泥浆法(SI)等工艺的最新研究进展.","authors":[{"authorName":"严春雷","id":"089d5061-b3c5-4386-8ee8-f549da07d8ab","originalAuthorName":"严春雷"},{"authorName":"刘荣军","id":"18be7462-8091-4e41-b839-cb4dd74e149a","originalAuthorName":"刘荣军"},{"authorName":"曹英斌","id":"5102c4c6-9874-4e77-937d-1e7f03865623","originalAuthorName":"曹英斌"},{"authorName":"张长瑞","id":"63790f98-4174-410f-9ddb-a5853bc2ff27","originalAuthorName":"张长瑞"},{"authorName":"张德坷","id":"6688c548-f096-4695-be98-99f11f5d4fce","originalAuthorName":"张德坷"}],"doi":"10.3969/j.issn.1007-2330.2012.04.002","fpage":"7","id":"116abebe-4253-4c02-83a8-017945e680ad","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"417821d2-d92f-48cd-a574-02ffa8243fc2","keyword":"超高温陶瓷","originalKeyword":"超高温陶瓷"},{"id":"d5bb9cbd-0595-404d-adea-c6c861749128","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"9553bd2d-5da0-4385-bea2-c1d2cc48ac27","keyword":"制备工艺","originalKeyword":"制备工艺"}],"language":"zh","publisherId":"yhclgy201204002","title":"超高温陶瓷基复合材料制备工艺研究进展","volume":"42","year":"2012"},{"abstractinfo":"利用XRD对超高温陶瓷粉进行分析,从衍射谱图能得到各物相组成为ZrB2 SiC、ZrO2,并且采用全谱拟合法对各物相进行定量计算.结果显示,定量分析结果的绝对误差小于2%,全谱拟合分析方法能准确地对超高温陶瓷的物相进行定量分析.","authors":[{"authorName":"王晓叶","id":"aac4b842-159e-47c2-9496-341186905855","originalAuthorName":"王晓叶"},{"authorName":"郑斌","id":"2cebf5b5-18ae-48b3-8674-41dd82365d9d","originalAuthorName":"郑斌"},{"authorName":"冯志海","id":"fc8b3d95-0fc1-4c63-92a3-d51f56fbaad2","originalAuthorName":"冯志海"}],"doi":"","fpage":"95","id":"4a141e9b-7da8-4c14-879b-edc7a2eabc7d","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"b872ee3e-4385-4c4a-9c68-f7dac7134ea2","keyword":"高温陶瓷","originalKeyword":"高温陶瓷"},{"id":"4c2d6bd0-aac2-4372-9d97-cb4011b6d0ff","keyword":"X射线衍射","originalKeyword":"X射线衍射"},{"id":"719af017-db8f-439f-8916-e1659614dce6","keyword":"全谱拟合法","originalKeyword":"全谱拟合法"},{"id":"3d6af5e8-8d32-42d6-a6ed-25740aa75c2a","keyword":"物相定量","originalKeyword":"物相定量"},{"id":"25896ce6-f6a0-4529-9e68-c01c052a940f","keyword":"ZrB2-SiC","originalKeyword":"ZrB2-SiC"}],"language":"zh","publisherId":"yhclgy201302022","title":"ZrB2-SiC超高温陶瓷的定量分析","volume":"43","year":"2013"},{"abstractinfo":"为了研究炸药对ZrB2-SiC超高温陶瓷密度与组织的影响,采用爆炸压实工艺制备了SiC纳米颗粒和SiC晶须分别增韧的两类ZrB2基超高温陶瓷复合材料.研究发现:选择低速的硝酸铵或高速的黑索今时,两类ZrB2-SiC爆炸压实坯密度都比较低,而选择混合炸药时致密效果较好;采用225 g黑索今与75 g硝酸铵的混合炸药时,ZrB2-SiCw超高温陶瓷的最高致密度达到了95.25%,ZrB2-SiCnm超高温陶瓷的最高致密度达到了96.12%;球磨混料后,纳米颗粒或晶须都能均匀弥散在微米ZrB2基体中.与ZrB2-SiCw超高温陶瓷爆炸压实坯相比,ZrB2-SiCnm超高温陶瓷显微组织细小,且不出现ZrB2与SiC相的富集,是比较理想的显微结构.","authors":[{"authorName":"王和平","id":"455dc889-1140-418d-828c-eba69519e220","originalAuthorName":"王和平"},{"authorName":"梁一鸣","id":"19b2da4d-3647-4dce-a19f-1e1cbdd10fd7","originalAuthorName":"梁一鸣"},{"authorName":"刘时强","id":"80120943-b1aa-475a-9fbd-50583c080394","originalAuthorName":"刘时强"},{"authorName":"李金平","id":"6e0ae514-8564-4c19-bd71-0c453d6023a7","originalAuthorName":"李金平"},{"authorName":"周玉锋","id":"fb6b4247-2f93-42d7-9760-f6948f77307c","originalAuthorName":"周玉锋"}],"doi":"","fpage":"50","id":"bb992d66-1ec1-4b10-b8ed-2aed129d25a4","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"41117be9-ec66-4bbf-8a7e-0070252dd4d2","keyword":"爆炸压实","originalKeyword":"爆炸压实"},{"id":"9ec81026-3a60-4a69-b580-bf417d8cf4c0","keyword":"超高温陶瓷","originalKeyword":"超高温陶瓷"},{"id":"a0338d6c-2cbd-40db-8794-33036d58ea95","keyword":"ZrB2-SiC","originalKeyword":"ZrB2-SiC"},{"id":"a16a5119-d4e2-4aa5-a3e5-43b2123577d4","keyword":"纳米SiC","originalKeyword":"纳米SiC"},{"id":"bf4f78f7-7791-46c6-847a-776e71737dd5","keyword":"SiC晶须","originalKeyword":"SiC晶须"}],"language":"zh","publisherId":"clkxygy201105011","title":"爆炸压实ZrB_2-SiC超高温陶瓷的密度与组织","volume":"19","year":"2011"},{"abstractinfo":"研究了多种强韧化方法以提高超高温陶瓷材料抗热冲击性能,包括碳化硅晶须增强增韧、石墨软相增韧和氧化锆相变增韧.同时,还研究了碳化硅含量对超高温陶瓷材料的抗氧化性能影响.研究结果表明:碳化硅晶须和氧化锆的添加显著提高了材料的抗热冲击临界温差,而石墨软相的引入对抗冲击临界温差的影响不大,但显著提高了裂纹扩展阻力和强度保持率.高SiC含量超高温陶瓷材料在1 800℃以下具有的优异的抗氧化性能,在更高的温度下,高与低的SiC含量对超高温陶瓷材料的抗氧化性能均不利,通过优化材料的组分以降低材料表面温度是提高超高温陶瓷材料的抗氧化性能的一个非常有效的途径.","authors":[{"authorName":"张幸红","id":"2e6a30ae-c412-48b4-bdd1-8aae5bd09695","originalAuthorName":"张幸红"},{"authorName":"胡平","id":"f7264749-0aff-4b50-a387-0ff306ecc594","originalAuthorName":"胡平"},{"authorName":"韩杰才","id":"49be9608-e873-4e51-9781-f95aaedc2b8c","originalAuthorName":"韩杰才"},{"authorName":"杜善义","id":"da7c30e9-0bf2-4ddc-8c77-c0c1dca85232","originalAuthorName":"杜善义"}],"doi":"","fpage":"27","id":"a6259fb9-b621-4823-9d25-f5f86de9c915","issue":"1","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"0c7f8bd1-295e-40de-8bc5-b3bd56f5dc9a","keyword":"超高温陶瓷材料","originalKeyword":"超高温陶瓷材料"},{"id":"94b0bfa4-f138-493f-8681-fed249707d94","keyword":"强韧化","originalKeyword":"强韧化"},{"id":"49a33708-15c4-476f-8ec8-7e5b51c66682","keyword":"抗热冲击","originalKeyword":"抗热冲击"},{"id":"86aec8bb-6cbb-4e61-a996-c84183bd0688","keyword":"抗氧化","originalKeyword":"抗氧化"}],"language":"zh","publisherId":"zgcljz201101006","title":"超高温陶瓷材料抗热冲击性能及抗氧化性能研究","volume":"30","year":"2011"},{"abstractinfo":"由于在极端环境中具有优异的物理化学性能,超高温陶瓷成为未来高超声速飞行和可重复使用运载飞船领域最具前途的候选材料之一.本文对硼化锆基超高温陶瓷材料粉体合成、烧结致密化和高温热机械性能(主要为抗氧化和抗烧蚀性能)研究方面作了综合评述,对材料研究和应用方面存在的问题作了初步总结,期望能够为推动超高温陶瓷材料的实际应用起到一定的指导意义.","authors":[{"authorName":"闫永杰","id":"a9907b9f-c1e6-41c3-bb4f-7407c5ed8f15","originalAuthorName":"闫永杰"},{"authorName":"张辉","id":"dce56489-fb89-4b40-bacf-b8dace24fd82","originalAuthorName":"张辉"},{"authorName":"黄政仁","id":"150d6493-94f7-4e27-8b39-ff0e8e686025","originalAuthorName":"黄政仁"},{"authorName":"刘学建","id":"f3fcc881-35c9-4ccc-92d4-5501f0fdbc1f","originalAuthorName":"刘学建"}],"doi":"","fpage":"793","id":"9f377bdb-c84c-4e08-923e-726868458687","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"4279572c-a6c9-4b50-b720-e148178c0e83","keyword":"超高温陶瓷","originalKeyword":"超高温陶瓷"},{"id":"b2d17ca2-73d5-451f-9d12-2a774f8c25df","keyword":"致密化","originalKeyword":"致密化"},{"id":"1f151f66-02ea-4976-a5c0-af800f9eb8ed","keyword":"抗氧化","originalKeyword":"抗氧化"},{"id":"36e9d415-f54b-4bba-9e41-811ac328f98d","keyword":"抗烧蚀","originalKeyword":"抗烧蚀"}],"language":"zh","publisherId":"clkxygc200905037","title":"硼化锆基超高温陶瓷材料的研究进展","volume":"27","year":"2009"},{"abstractinfo":"在Ph为10.9,分散剂PMAA-NH4为8vol%,固体含量为40vol%的条件下采用注凝成型技术制备了HfB2-(5%~15wt%)MoSi_2超高温陶瓷坯体,密度达到4.25 g/cm~3以上,在氩气气氛下1950 ℃保温30 min烧成.采用X射线衍射仪、扫描电镜等分析方法研究了添加剂MoSi_2对HfB2超高温陶瓷材料性能的影响、烧结体的物相组成和显微结构.结果表明:添加剂MoSi_2可有效促进HfB2超高温陶瓷材料的致密化,随着MoSi_2加入量的提高,HfB2超高温陶瓷材料的力学性能不断提高,当加入量为15%时,可得到显微硬度为9.8 Gpa,抗弯强度为389.7 Mpa,断裂韧性为3.7 Mpa·m~(1/2)的HfB2超高温陶瓷材料.","authors":[{"authorName":"唐竹兴","id":"aa61ef01-a879-42b6-9de8-2790942ef0fa","originalAuthorName":"唐竹兴"},{"authorName":"杨晴晴","id":"4dc97daa-f230-4777-b802-c102e2c5ce3f","originalAuthorName":"杨晴晴"},{"authorName":"杨赞中","id":"917a8da0-5386-4503-b9eb-cc581ed1b0b8","originalAuthorName":"杨赞中"}],"doi":"","fpage":"930","id":"e7488152-ff6b-409b-8882-501c36261805","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d107f36c-fe07-4547-bc78-d45763b2de9e","keyword":"注凝成型","originalKeyword":"注凝成型"},{"id":"b55d90fc-7c93-4823-a035-a5dffdfb772f","keyword":"超高温陶瓷材料","originalKeyword":"超高温陶瓷材料"},{"id":"9b8c48da-a933-4d4c-91d3-26ab3b925e19","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"e803f8f2-663a-469a-93af-ba3615839a1b","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gsytb200905013","title":"MoSi_2对注凝成型HfB2超高温陶瓷材料性能的影响","volume":"28","year":"2009"}],"totalpage":6054,"totalrecord":60531}