{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"首先介绍了相变吸热材料的概念、分类及部分相变材料的热物性,并探讨了其在冲压发动机热防护中的应用价值.无机熔融盐具有较高的相变温度和较大的相变焓,适于作为冲压发动机热防护热端相变材料;热防护层冷端选择多元醇作为相变材料,可通过相变吸热有效减缓冷端升温速率.以纤维多孔陶瓷作为基体制备复合相变材料可解决无机熔融盐的液相流动渗透问题,并讨论了复合材料的制备工艺.","authors":[{"authorName":"吴蔚","id":"3e6d7fa5-41b3-48ae-bf80-2250783fd308","originalAuthorName":"吴蔚"},{"authorName":"陈玉峰","id":"0ed87530-8381-47ff-b265-e98de0d38fe9","originalAuthorName":"陈玉峰"},{"authorName":"石兴","id":"6ed0721b-b25b-4ff7-83f3-47f4d4be8732","originalAuthorName":"石兴"},{"authorName":"张世超","id":"098c9a95-22a2-41f1-8207-c66604095ed7","originalAuthorName":"张世超"}],"doi":"10.3969/j.issn.1001-4381.2010.z2.125","fpage":"458","id":"526cba07-61b1-4804-b5c4-5081cec3d86b","issue":"z2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"85381cdc-f605-44d3-925e-9fa5a64d0711","keyword":"相变吸热","originalKeyword":"相变吸热"},{"id":"4ca51ccc-20b3-4f11-94a2-f670ed8d0b10","keyword":"冲压发动机","originalKeyword":"冲压发动机"},{"id":"f4e02319-97f8-4efb-863e-55ba1bd1b090","keyword":"无机熔融盐","originalKeyword":"无机熔融盐"},{"id":"42e6c9cb-83e7-4ebf-bd79-de9060947b2b","keyword":"多元醇","originalKeyword":"多元醇"},{"id":"60f8b715-2621-42ca-890c-610c39618a80","keyword":"多孔陶瓷","originalKeyword":"多孔陶瓷"}],"language":"zh","publisherId":"clgc2010z2125","title":"吸热型隔热材料在冲压发动机热防护中的应用","volume":"","year":"2010"},{"abstractinfo":"提出应用3ω谐波探测技术进行脲醛树脂-石蜡相变微胶囊的有效吸热系数的测量方法.测试了跨越相变温度区间的微胶囊有效吸热系数,分析了有效吸热系数随温度的变化关系.在其相变温度区间内,有效吸热系数存在极大值,该极值点对应的温度与其相变温度峰值一致.","authors":[{"authorName":"郑兴华","id":"1a466afa-43e3-453c-962d-6d9ae5480319","originalAuthorName":"郑兴华"},{"authorName":"邱琳","id":"ff7abd5a-f469-4d1e-ac0c-cacc74335eb4","originalAuthorName":"邱琳"},{"authorName":"李兰兰","id":"ce4b0404-356f-4e56-a04f-207844efb805","originalAuthorName":"李兰兰"},{"authorName":"岳鹏","id":"ca0187c9-9428-4a9b-89e2-29fc719e57f6","originalAuthorName":"岳鹏"},{"authorName":"王刚","id":"46e58557-4fee-4ef7-96cd-60cfed52fd97","originalAuthorName":"王刚"},{"authorName":"唐大伟","id":"a4449ec7-aefc-44a3-b4ee-1e2cde2cb084","originalAuthorName":"唐大伟"}],"doi":"","fpage":"1692","id":"8fa9d43d-02a5-4499-934a-5011ef60b243","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"95e45180-4491-4dbf-9872-214c8e211275","keyword":"谐波探测","originalKeyword":"谐波探测"},{"id":"72c1c0fe-aba2-4658-9183-b311ad127bb5","keyword":"有效吸热系数","originalKeyword":"有效吸热系数"},{"id":"4b353485-f6ee-4f40-b3f7-329c4ce5deb7","keyword":"相变微胶囊","originalKeyword":"相变微胶囊"}],"language":"zh","publisherId":"gcrwlxb201309021","title":"相变微胶囊的吸热系数测量","volume":"34","year":"2013"},{"abstractinfo":"塔式太阳能热发电外圆柱式熔盐吸热器的总体尺寸和流量一定时,其性能主要取决于吸热管的结构参数.利用Fluent软件,通过对不同管径、壁厚的熔盐吸热管的传热特性的模拟分析,揭示吸热管结构参数对吸热器性能的影响规律.结果显示,吸热管直径在15 mm至20 mm之间时,吸热器具有较好的综合性能;吸热管外壁面温度随壁厚的增加而急剧增加,导致吸热器的辐射损失和对流损失增加.","authors":[{"authorName":"杨敏林","id":"e600ba54-b72c-4d25-91ac-8474dd1e7a6f","originalAuthorName":"杨敏林"},{"authorName":"杨晓西","id":"2f33fd7c-bdca-4954-9e0c-f2421e08b834","originalAuthorName":"杨晓西"},{"authorName":"杨小平","id":"1d0ea8b9-cd54-409e-a206-ce891b93e112","originalAuthorName":"杨小平"},{"authorName":"丁静","id":"8bf3c21c-c151-4d32-95c0-004900768a07","originalAuthorName":"丁静"}],"doi":"","fpage":"849","id":"e34ed517-b50a-4adc-9eed-ab592511e387","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"aa93e330-965a-4eb3-8e00-dbed42bd65a1","keyword":"太阳能热发电","originalKeyword":"太阳能热发电"},{"id":"bdea5fa4-8ed8-49b1-a911-3bdf6517e77f","keyword":"熔盐吸热器","originalKeyword":"熔盐吸热器"},{"id":"655547dc-b526-4d03-b3b8-04a9b3fd1345","keyword":"性能","originalKeyword":"性能"},{"id":"9b716bc4-94ce-453a-b8b9-90064ccc6ace","keyword":"吸热管参数","originalKeyword":"吸热管参数"}],"language":"zh","publisherId":"gcrwlxb201005034","title":"吸热管参数对熔盐吸热器性能的影响","volume":"31","year":"2010"},{"abstractinfo":"采用外敷保温层的螺旋盘管作为碟式太阳能集热器的腔式吸热器.利用CFD分析的方法得到了螺旋管腔式太阳能吸热器和内部流体的温度场分布及流体的速度场分布.通过插值的方法,将CFD分析中得到的螺旋管腔式吸热器模型中的网格节点温度场导入到热应力分析模型中的网格节点并作为热应力场分析的输入载荷.结果表明,在靠近吸热器保温层侧的流体流速比靠近吸热器内腔侧的流体流速高,靠近保温层侧的流体温度和壁面温度要低;在螺旋管腔式吸热器出口处,最大等效热应力出现在吸热器内腔侧的螺旋管内壁面处,切向应力对最大等效热应力影响最大.因此,要提高螺旋管吸热器的可靠性,应先设法降低螺旋管吸热器沿圆周方向的温度梯度.","authors":[{"authorName":"王富强","id":"809cd806-0ca3-4cb4-b0a3-03a917f7021b","originalAuthorName":"王富强"},{"authorName":"帅永","id":"0a2a958a-f9e6-4080-b902-737124dbc6e9","originalAuthorName":"帅永"},{"authorName":"谈和平","id":"e581e99b-3f2b-4756-a72b-0c269efc0d38","originalAuthorName":"谈和平"}],"doi":"","fpage":"843","id":"ecb68edd-48c7-429e-9525-b71a691033fb","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"fde135df-d075-4377-ad37-558450d8ab9e","keyword":"太阳能","originalKeyword":"太阳能"},{"id":"a7268a24-9893-4a27-88fb-564c92176a3b","keyword":"腔式吸热器","originalKeyword":"腔式吸热器"},{"id":"17dcaf19-3f25-4e3f-a977-c1298b8a919d","keyword":"螺旋管","originalKeyword":"螺旋管"},{"id":"6aae2006-e55e-49ec-a7f4-efd116acd5b2","keyword":"热应力","originalKeyword":"热应力"},{"id":"d4b44862-ac11-4003-ba7b-0bc13614a801","keyword":"温度场","originalKeyword":"温度场"}],"language":"zh","publisherId":"gcrwlxb201105031","title":"腔式太阳能吸热器的热分析","volume":"32","year":"2011"},{"abstractinfo":"腔式吸热器是塔式太阳能热发电系统中非常关键的一个部件,它的性能直接关系到整个发电系统的效率,因此对吸热器内的太阳能热流密度及吸热器的效率进行计算在吸热器设计中便显得尤为重要.本文提出了一种综合计算的方法来解决这个问题:首先利用蒙特卡罗(Monte Carlo)方法来模拟吸热器内太阳光束的行为,得到吸热器内的太阳能热流密度分布;然后利用流动换热的相应公式计算出吸热器内吸热管道的壁温;接着再对吸热器内空气的流场进行计算得到吸热器管道的热损失.利用这种综合计算的方法可以估算出太阳能在吸热器表面的热流密度分布以及吸热器的效率,为吸热器设计提供一定的理论指导.","authors":[{"authorName":"方嘉宾","id":"8ece7f30-3bcb-4716-8aec-b0fc77f70a6e","originalAuthorName":"方嘉宾"},{"authorName":"魏进家","id":"3ac57fed-158b-4142-85ff-6e2c08c58d94","originalAuthorName":"魏进家"},{"authorName":"董训伟","id":"190e9553-0c66-4f21-b144-3deea41cff60","originalAuthorName":"董训伟"},{"authorName":"王跃社","id":"ae63fd80-ac89-4a59-b9fd-dca6376c3668","originalAuthorName":"王跃社"}],"doi":"","fpage":"428","id":"abc36643-fbd7-4181-bb3f-7565a3a9250d","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8dbe7113-0a2c-4e34-9253-f129365c85fc","keyword":"腔式吸热器","originalKeyword":"腔式吸热器"},{"id":"8c6316f0-6188-4c11-89d1-7552363d4faf","keyword":"蒙特卡罗方法","originalKeyword":"蒙特卡罗方法"},{"id":"eaa3c495-6175-4910-82ae-dc3499bb43f6","keyword":"热损失","originalKeyword":"热损失"}],"language":"zh","publisherId":"gcrwlxb200903017","title":"腔式太阳能吸热器热性能的模拟计算","volume":"30","year":"2009"},{"abstractinfo":"研究了在一种浮法吸热玻璃配方中掺杂CeO2对玻璃的紫外线屏蔽能力和澄清效果的影响,分析了其紫外线吸收机制.实验表明,紫外线屏蔽能力与CeO2掺入量有明显的依赖关系,随着掺入量的增加,紫外线的透过率呈降低趋势.与此同时,CeO2的添加对玻璃的澄清效果和防红外能力也有一定的影响.","authors":[{"authorName":"邵明迪","id":"94b9bae2-e296-4f85-b90a-5b02bc7e8d33","originalAuthorName":"邵明迪"},{"authorName":"李梅","id":"f4349dee-e6c2-4e58-bb83-bb3959c29a9f","originalAuthorName":"李梅"},{"authorName":"柳召刚","id":"a3f50602-87b7-4962-ac77-e47d1275a393","originalAuthorName":"柳召刚"},{"authorName":"张晓伟","id":"8763146a-3506-4147-986b-fcd514787ab1","originalAuthorName":"张晓伟"},{"authorName":"闫淑君","id":"8fa45e5f-8e31-42c4-817a-d674ec5e8ead","originalAuthorName":"闫淑君"}],"doi":"10.3969/j.issn.1004-0277.2012.04.004","fpage":"19","id":"c64f0817-7d50-47a1-88ac-bf8899fe0b15","issue":"4","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"22d72397-c203-4c08-9bde-8a1b47d5ff8c","keyword":"氧化铈","originalKeyword":"氧化铈"},{"id":"7baf2932-fe03-4555-8ae2-9085113fba05","keyword":"吸热玻璃","originalKeyword":"吸热玻璃"},{"id":"f1951fe2-d799-4849-b314-ce3d17bcc7ef","keyword":"抗紫外","originalKeyword":"抗紫外"},{"id":"085d8414-8505-49ae-9ee2-f79154e330e8","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"xitu201204004","title":"氧化铈对吸热玻璃性能的影响","volume":"33","year":"2012"},{"abstractinfo":"提出了由太阳能腔式吸热器所需净能量推算其开口所需太阳光功率的计算模型.通过给定吸热器温升速率,计算得到了腔式吸热器在启动过程所需的净能量.根据吸热器所需净能量,结合吸热器的实际结构和周围的风速条件,计算获得了吸热器启动过程开口所需功率随时间的变化规律,并得到了启动过程的效率曲线和热损失曲线,可为吸热器的高效和安全启动提供理论指导.","authors":[{"authorName":"魏进家","id":"0eabd2d9-e0ea-420c-b99e-96c4d3131b86","originalAuthorName":"魏进家"},{"authorName":"屠楠","id":"6988a0b9-6f8c-42ca-9211-72b0ef00e344","originalAuthorName":"屠楠"},{"authorName":"方嘉宾","id":"08470976-3c5a-4972-b1e4-bbb8e4f36265","originalAuthorName":"方嘉宾"}],"doi":"","fpage":"1023","id":"e3644000-a7e3-4557-af98-63e949c46d23","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"373966dc-8297-4402-9385-6986b8bb9341","keyword":"腔式吸热器","originalKeyword":"腔式吸热器"},{"id":"9c2d5f47-2bc8-4d05-93b1-614c3cdcad41","keyword":"温升速率","originalKeyword":"温升速率"},{"id":"dbfd1427-995a-472a-a0a8-7918fbc8b8e0","keyword":"启动","originalKeyword":"启动"},{"id":"d8de887e-8b97-426f-9f74-c1f8f5a88dcd","keyword":"效率","originalKeyword":"效率"}],"language":"zh","publisherId":"gcrwlxb201106032","title":"太阳能腔式吸热器启动过程性能的数值模拟","volume":"32","year":"2011"},{"abstractinfo":"采用自编程的蒙特卡罗光线追迹程序模拟了太阳辐射在吸热器中的传播过程,计算求得了吸热体内的热流密度分布情况。由随机光子的传播特性可知,不同的系统参数会对吸热体内辐射分布产生影响。根据太阳辐射在吸热器中的传播顺序,本文依次考察了入射光倾角、多孔介质的几何形状以及厚度、吸收系数与消光系数比值(μa/μt)以及孔隙率(ε)等因素对SiC泡沫金属吸热体内吸收辐射分布的影响。计算结果表明入射光倾角和吸热体的几何形状是影响吸热体内热流分布均匀性的主要因素,且随着μa/μt比值的降低和ε的增加,吸热体内热流密度极值迅速减小,同时厚度方向的热流密度梯度变缓。本文的研究结果可以为太阳能吸热器的结构设计和材料选择提供参考。","authors":[{"authorName":"崔福庆","id":"bb9b089f-2386-4687-81d8-842b05d3ea6f","originalAuthorName":"崔福庆"},{"authorName":"何雅玲","id":"b512e467-b671-43c4-b15b-d0e5d6f39c2e","originalAuthorName":"何雅玲"},{"authorName":"李东","id":"aba6aefa-c2d2-4967-a99a-144ef08abe68","originalAuthorName":"李东"},{"authorName":"陶于兵","id":"37e8309e-13d5-459e-ad23-13c75f420ce1","originalAuthorName":"陶于兵"},{"authorName":"程泽东","id":"be8c4a8b-fcdb-432b-97e7-c0ffc9473f72","originalAuthorName":"程泽东"}],"doi":"","fpage":"1375","id":"5be8ca4e-ff04-4932-9ea1-e8a4480a2b23","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"148d33e9-3e65-4b52-901d-cacb07bb06fd","keyword":"REFOS吸热器","originalKeyword":"REFOS吸热器"},{"id":"c94db79f-5f39-4f37-b6a0-a1bd0bab6405","keyword":"光线追迹","originalKeyword":"光线追迹"},{"id":"cab65bf7-9a45-4255-aeda-c597abc434ec","keyword":"热流密度分布","originalKeyword":"热流密度分布"},{"id":"b90852fb-5805-4dc6-b37a-78defc969e25","keyword":"参数分析","originalKeyword":"参数分析"}],"language":"zh","publisherId":"gcrwlxb201108030","title":"塔式吸热器中辐射传播过程的参数分析","volume":"32","year":"2011"},{"abstractinfo":"作为塔式太阳能热发电核心的吸热体材料起着吸热、换热的重要作用,影响着整个热发电系统的稳定性及效率.首先介绍了塔式太阳能热发电吸热体材料的性能要求,其次综述了国内外吸热体材料最新研究进展,介绍了国内外所采用吸热体材料的种类、类型及性能参数.最后,展望了塔式太阳能吸热体材料技术未来的发展方向.","authors":[{"authorName":"吴建锋","id":"81fed167-01a6-4e95-b84a-c315613b7aa5","originalAuthorName":"吴建锋"},{"authorName":"刘孟","id":"8945a261-d7bb-461b-b153-3f7cf5138851","originalAuthorName":"刘孟"},{"authorName":"徐晓虹","id":"d930fba1-2580-4946-a902-4323ed4639ca","originalAuthorName":"徐晓虹"},{"authorName":"徐涛","id":"8f05e673-caf7-41ec-abef-8ad45583da32","originalAuthorName":"徐涛"},{"authorName":"陈岭","id":"05630d6e-f27a-4ea4-9008-24b6da1d7d22","originalAuthorName":"陈岭"},{"authorName":"张电","id":"ad220886-0093-4a4f-bb70-94c132232491","originalAuthorName":"张电"}],"doi":"","fpage":"57","id":"42ead97d-b98e-493e-a446-e5a9f38fef3c","issue":"13","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a9883fa2-1fa8-4594-9b6b-b1d0708a3a12","keyword":"太阳能","originalKeyword":"太阳能"},{"id":"6e0f286c-8de6-4e04-aa75-d393b212373d","keyword":"太阳能热发电","originalKeyword":"太阳能热发电"},{"id":"7d3e3849-674b-4281-930d-ce3e10fecaf0","keyword":"陶瓷吸热体","originalKeyword":"陶瓷吸热体"},{"id":"cdf9c6fc-9c35-47d6-aa72-8f766c766801","keyword":"合金吸热体","originalKeyword":"合金吸热体"}],"language":"zh","publisherId":"cldb201313012","title":"塔式太阳能热发电吸热体材料研究进展","volume":"27","year":"2013"},{"abstractinfo":"螺旋盘管腔式吸热器在塔式和碟式太阳能热利用中都有广泛的应用。聚集热流的非均匀性导致吸热器内产生温度梯度,从而在管内产生热应力,导致吸热管变形,而当温度梯度足够大时,热应力会导致吸热管破坏,严重影响吸热器的寿命。本文以四种气体工质为传热介质,基于CFD分析得到气体在吸热器中的管内流动情况及管壁的温度场分布,再将管壁得到的温度场直接加载到热应力分析模型中得到螺旋管的热应力分布。","authors":[{"authorName":"于春亮","id":"e0d4df22-4fdc-46d9-9405-28ddc5c35568","originalAuthorName":"于春亮"},{"authorName":"王幸智","id":"cf63229b-d7f5-4b4b-a944-ee1850a508d4","originalAuthorName":"王幸智"},{"authorName":"王富强","id":"77715aaa-d29e-4b48-9b86-f4f59fdab15d","originalAuthorName":"王富强"},{"authorName":"帅永","id":"a318640c-9daf-40fd-a818-b007a520402f","originalAuthorName":"帅永"},{"authorName":"谈和平","id":"5120a969-37cc-4cba-930a-c2beac87c129","originalAuthorName":"谈和平"}],"doi":"","fpage":"2133","id":"5abe9870-a5ff-4d8b-9b2e-8c75e70db485","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"ed9ca934-b402-4e9d-9c63-6ca1a4eda1a9","keyword":"螺旋管","originalKeyword":"螺旋管"},{"id":"bcead4cf-e67f-4722-958b-ad529e55928f","keyword":"吸热器","originalKeyword":"吸热器"},{"id":"a3ea20a4-6240-4e74-a647-650e2111762f","keyword":"温度场","originalKeyword":"温度场"},{"id":"b36ddd05-0010-4444-aa54-2caf94e3a875","keyword":"热应力","originalKeyword":"热应力"}],"language":"zh","publisherId":"gcrwlxb201212029","title":"螺旋盘管腔式太阳能吸热器的热力耦合特性","volume":"33","year":"2012"}],"totalpage":557,"totalrecord":5567}