郭志鹏
,
熊守美
,
曺尚铉
,
崔正吉
金属学报
采用“阶梯”模具,设计了压铸过程模具温度测量的实验方案并进行了压铸实验,以实验中测得的铸型内部不同位置的温度为基础,采用热传导反算法求解了压铸过程中铸件/铸型界面热流以及换热系数。分析了铸件的厚度对于界面热流以及换热系数的影响,研究结果表明:压铸过程铸件/铸型界面热流或是换热系数随着压射过程的进行迅速升高直至最大值,然后随着凝固过程的进行而减小。同时,铸件的不同厚度部位与铸型之间的界面热流和换热系数的变化规律也不同,随着铸件厚度的增大,件/型之间的界面热流和换热系数峰值都要减小,但是界面热流和换热系数的较大值保持的时间则逐渐增大。
关键词:
高压铸造
,
null
,
null
,
null
郭志鹏
,
熊守美
,
曺尚铉
,
崔正吉
金属学报
通过采用本文第1部分提出的数学模型,本文的第2部分将求解各种工艺参数下铸件/铸型间的界面热流和换热系数,重点研究不同工艺参数如铸造压力、低速速度、高速速度、浇铸温度和铸型温度等对于界面热流和换热系数的影响。在现有的“阶梯”块铸件的条件下,计算结果表明:压铸过程各种工艺参数对于铸件/铸型界面热流和换热系数有着不同的影响规律。铸型初始的模腔表面温度对于界面热流的峰值有着很大的影响,而且随着铸型初始模腔表面温度的上升,热流峰值在不断地下降。其它工艺参数对于热流峰值则没有很大的影响作用。对于较厚的 “阶梯”面,铸型初始的模腔表面温度对于界面换热系数的影响较大,与对热流的影响相似,随着该温度的上升,界面换热系数的峰值也在不断地下降。而其他工艺参数则对其影响不大。对于较薄的 “阶梯”面,各种工艺参数对于界面换热系数的影响不大。
关键词:
高压铸造
,
null
,
null
,
null
郭志鹏
,
熊守美
,
曺尚铉
,
崔正吉
金属学报
采用铝合金ADC12以及镁合金AM50为铸件材料, 并采用“阶梯”铸件进行了压铸实验.以压铸过程实际测得的温度作为输入参数, 利用自行编制的热传导反算程序计算了压铸过程铸件/铸型间的换热系数. 结果表明: 不同合金材料对界面换热系数的影响主要表现在换热系数的数值以及保持较高数值所持续的时间上, 而对换热系数曲线的形状影响不大; 随着高速速度的增大, 较薄“阶梯”与铸型之间的换热系数增大;对于较厚“阶梯”, 随着铸型初始温度的上升, 换热系数不断减小. 随着铸造压力的增大, 最厚“阶梯”与铸型之间换热系数逐渐增大, 但铸造压力只在镁合金AM50实验条件下表现出了明显的影响规律.
关键词:
界面换热系数
,
null
,
null
,
null
郭志鹏
,
熊守美
,
曺尚铉
,
崔正吉
金属学报
doi:10.3321/j.issn:0412-1961.2007.06.011
基于热传导反算中的非线性估算法,建立了求解界面热流及换热系数的数学模型,并在此基础上开发了热传导反算程序.通过在网格边界上施加三角形热流,求解出网格内部不同位置点的温度变化曲线,然后以求解出的温度为输入数据,利用反算程序求解出界面热流,通过对比求解的热流和实际的热流,验证了该模型的准确性.同时本文还分析了测温传感器的滞后、热流形状、计算参数、采样频率以及测温点离表面的距离对于计算结果的影响,并且针对相关问题提出了解决方案.
关键词:
非线性估算法
,
界面换热
,
热传导反算
郭志鹏
,
熊守美
,
曺尚铉
,
崔正吉
金属学报
doi:10.3321/j.issn:0412-1961.2008.04.010
采用铝合金ADC12以及镁合金AM50为铸件材料,并采用"阶梯"铸件进行了压铸实验.以压铸过程实际测得的温度作为输入参数,利用自行编制的热传导反算程序计算了压铸过程铸件/铸型间的换热系数.结果表明:不同合金材料对界面换热系数的影响主要表现在换热系数的数值以及保持较高数值所持续的时间上,而对换热系数曲线的形状影响不大;随着高速速度的增大,较薄"阶梯"与铸型之间的换热系数增大;对于较厚"阶梯",随着铸型初始温度的上升,换热系数不断减小.随着铸造压力的增大,最厚"阶梯"与铸型之间换热系数逐渐增大,但铸造压力只在镁合金AM50实验条件下表现出了明显的影响规律.
关键词:
界面换热系数
,
压铸
,
ADC12
,
AM50
,
工艺参数
杜玉兵
,
荀勇
材料导报
国内外对织物增强水泥基复合材料的研究尚处于试验与理论研究阶段.简要阐述了该类复合材料的研究现状,着重分析和展望了该类复合材料的后续研究方向、开发应用的技术思路和应用前景,认为微观和宏观相结合是探明其力学机理的基础,而织物丰富的纺织原料和结构使得其增强的水泥基复合材料性能多元化.
关键词:
织物
,
水泥基复合材料
,
研究现状
,
应用前景
尤国春
,
张鹏
,
王如竹
工程热物理学报
本文实验研究了常压下液氮在多方位矩形窄缝通道中的沸腾传热特性.研究发现液氮在不同窄缝方位角时,壁面过热度有差异;窄缝间隙愈小,沸腾传热系数愈高.在中等热流密度下,强化传热作用明显,传热系数可达常规光管的3~5倍.加热面呈0°和180°放置时,在相同热流下其他角度尚处于核态沸腾区时,已达CHF点.
关键词:
多方位
,
液氮
,
窄缝