{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用混酸纯化法在碳纳米管表面引入羟基、羧基等基团,利用明胶使碳纳米管分散在硫酸溶液中,和葡萄糖在碱性条件下还原得到内嵌碳纳米管的氧化亚铜复合颗粒,再利用氢气将其还原成为内嵌碳纳米管的复合颗粒,通过SEM和TEM观察复合颗粒的形貌,用XRD分析了复合颗粒的物相.结果表明:制备的内嵌碳纳米管的复合颗粒粒径在几百纳米到几微米之间,每个颗粒表面均匀分布毛刺状的碳纳米管;纯化后的碳纳米管在硫酸溶液中的分散性有所改善,使复合颗粒的纯净度及碳纳米管在颗粒内的分散均匀性较好.","authors":[{"authorName":"王伟","id":"35ee40d8-e425-4645-947b-94c1778355a9","originalAuthorName":"王伟"},{"authorName":"陈小华","id":"27203f00-6e5c-4e83-8665-04901c71e35e","originalAuthorName":"陈小华"},{"authorName":"刘云泉","id":"bcc7b73b-0962-4f91-bcf0-fe4e56ee1133","originalAuthorName":"刘云泉"},{"authorName":"易斌","id":"fb4c30a5-abd1-4d14-9a80-825011027253","originalAuthorName":"易斌"},{"authorName":"颜海梅","id":"940ab424-b68a-495b-98a6-c30b2ebc8fb3","originalAuthorName":"颜海梅"}],"doi":"","fpage":"38","id":"20116ccd-170e-4088-8344-a8cf0134f4b7","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"d8bf05d2-4e5e-414f-b81c-4f9e74d621f8","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"e5e076f0-b09b-44a5-a637-401eabf39292","keyword":"氧化亚铜","originalKeyword":"氧化亚铜"},{"id":"e8b1da36-e3e5-49c1-b188-dea101e9ad45","keyword":"复合颗粒","originalKeyword":"铜复合颗粒"}],"language":"zh","publisherId":"jxgccl201104011","title":"内嵌碳纳米管复合颗粒的制备","volume":"35","year":"2011"},{"abstractinfo":"颗粒增强复合材料在基本保持金属优良导电和导热性能的基础上大大提高了复合材料的强度和耐磨性,是一种具有良好发展前景的复合材料.回顾了近年来颗粒增强复合材料的增强相和制备方法的发展,并指出了今后研究发展的方向.","authors":[{"authorName":"刘涛","id":"549e44f1-c6db-44c4-b05a-525e48015bcc","originalAuthorName":"刘涛"},{"authorName":"郦剑","id":"596f9b76-7d48-40a9-bd38-5da0f962164a","originalAuthorName":"郦剑"},{"authorName":"凌国平","id":"5dc07dd8-76c5-409c-961e-74d620903a84","originalAuthorName":"凌国平"},{"authorName":"范景莲","id":"e9981c86-66f2-48be-ab7c-83a428248b45","originalAuthorName":"范景莲"}],"doi":"","fpage":"53","id":"9b3297bf-f6d0-4b82-b911-7c8b543d5303","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e9146db1-e2c3-4c8a-9a5a-25e610b5390b","keyword":"颗粒增强","originalKeyword":"颗粒增强"},{"id":"dc2ce824-548d-4822-b356-2c54869e527a","keyword":"复合材料","originalKeyword":"铜基复合材料"},{"id":"81c100ad-5684-47bb-8823-c41cadef42e7","keyword":"发展","originalKeyword":"发展"}],"language":"zh","publisherId":"cldb200404016","title":"颗粒增强复合材料研究进展","volume":"18","year":"2004"},{"abstractinfo":"采用化学镀铜工艺在石墨颗粒表面镀上一层金属,通过粉末冶金方法制备了/石墨复合材料,研究了石墨颗粒表面镀层在不同处理温度下的球化问题和改善复合材料界面结合的作用效果.结果表明,石墨颗粒表面镀层有利于改善基石墨复合材料的界面结合,使复合材料力学性能提高;处理温度较高时,表面镀层有熔融球化的趋势,当复合材料烧结温度超过石墨镀铜层的完全球化温度时,镀铜石墨粉改善界面结合的效果逐渐降低,直至消失.","authors":[{"authorName":"尹延国","id":"6ee680bd-f5b6-4aa5-8f55-f60c2c926f2c","originalAuthorName":"尹延国"},{"authorName":"杜春宽","id":"e92584df-1d99-4eb6-aab7-0c2b8db2e78a","originalAuthorName":"杜春宽"},{"authorName":"焦明华","id":"ebbd4640-1647-442a-b409-b6afee7388f7","originalAuthorName":"焦明华"},{"authorName":"俞建卫","id":"8256d3b8-fa65-4cd0-b73e-f1d4192a766a","originalAuthorName":"俞建卫"},{"authorName":"解挺","id":"f86bc396-4df4-4b14-bbb2-f8326101a882","originalAuthorName":"解挺"},{"authorName":"刘焜","id":"4c82c845-aa45-45ee-b4cf-8b4b755af55a","originalAuthorName":"刘焜"}],"doi":"10.3969/j.issn.1009-6264.2007.06.010","fpage":"40","id":"37e2d26c-7a4e-4aed-95a7-4cd2770435c0","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"846d1caf-f639-4f1e-a9a9-8337e90c1d13","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"4ae6dc85-f2c5-4b7e-a86d-622e0c4b1225","keyword":"石墨","originalKeyword":"石墨"},{"id":"309e05c8-4338-419c-986a-05d624d54c30","keyword":"界面","originalKeyword":"界面"},{"id":"a71985b3-79c2-4521-8c74-aa7e0faddb90","keyword":"镀层球化","originalKeyword":"镀层球化"}],"language":"zh","publisherId":"jsrclxb200706010","title":"含镀铜石墨颗粒复合材料研究","volume":"28","year":"2007"},{"abstractinfo":"为了研究颗粒增强相对复合材料的性能的影响,对不同类型复合材料的特点及其制备方法进行对比分析,探讨了颗粒相的生成机制,重点论述了颗粒增强相的类型及复合材料的制备工艺.结果表明在基体中引入纳米分散相进行复合,可以使铜合金的力学性能得到极大改善,其中机械合金化和原位复合化学反应获得的纳米陶瓷颗粒复合材料中效果最佳;反应喷射沉积成型法、液相反应原位生成法和机械合金化法在制备纳米粒子增强复合材料方面有着良好的应用前景.","authors":[{"authorName":"张红霞","id":"47ee58d2-cb7a-44e4-925c-2fb99ec8cd58","originalAuthorName":"张红霞"},{"authorName":"胡树兵","id":"fcacf37e-61b3-4002-86c5-e54a450f41b9","originalAuthorName":"胡树兵"},{"authorName":"涂江平","id":"8017e971-add6-49e5-939d-185d3e498077","originalAuthorName":"涂江平"}],"doi":"10.3969/j.issn.1005-0299.2005.04.006","fpage":"357","id":"ccdd0715-62be-42dd-bb63-1797fce3427f","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"d3a89857-7f09-408f-9e66-899f3c65a9b8","keyword":"复合材料","originalKeyword":"铜基复合材料"},{"id":"59faf23e-5584-4990-bf87-de3cfdf43305","keyword":"颗粒增强","originalKeyword":"颗粒增强"},{"id":"1f998b66-e03a-41a4-b4b2-7536f3029415","keyword":"机械合金化","originalKeyword":"机械合金化"},{"id":"b67450bc-49e9-42a8-a411-b5d7ba717117","keyword":"原位复合纳米粒子","originalKeyword":"原位复合纳米粒子"}],"language":"zh","publisherId":"clkxygy200504006","title":"颗粒增强复合材料的研究进展","volume":"13","year":"2005"},{"abstractinfo":"研究了复合电沉积法制备的α-AIO/Cu、TiC/Cu和TiC&CaF/Cu复合材料的摩擦学性能及磨损机理.实验结果表明,颗粒的含量对磨损率有显著的影响,并且TiC&CaF/Cu是一种很好的减摩、耐磨材料.另外,显微照片显示,磨粒磨损和粘着磨损在磨损过程中占主导地位.","authors":[{"authorName":"董刚","id":"16c631a1-74a0-48bd-84c4-b1af4f2306bd","originalAuthorName":"董刚"},{"authorName":"刘奕","id":"339a6ca6-ced1-4f57-b827-c1fc32203067","originalAuthorName":"刘奕"},{"authorName":"赵乃勤","id":"2a8df825-9741-4134-9e5b-c23908b6d21f","originalAuthorName":"赵乃勤"},{"authorName":"沈兆光","id":"63c12971-5c40-4d85-abac-873370b32baf","originalAuthorName":"沈兆光"}],"doi":"","fpage":"98","id":"f570daec-de74-4bbe-8abe-6475dd46ff2d","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"47e7b164-3719-459c-b87a-6c307fb038fe","keyword":"α-AIO/Cu","originalKeyword":"α-AIO/Cu"},{"id":"d5ba25a9-2ae0-4b39-a1d4-ff8b4f247ce7","keyword":"TIC/Cu","originalKeyword":"TIC/Cu"},{"id":"1c0c85f4-30ff-452b-a007-3c98b321ca2b","keyword":"TiC&CaF/Cu","originalKeyword":"TiC&CaF/Cu"},{"id":"89cff668-c825-49aa-ba88-125495b4717a","keyword":"摩擦学性能","originalKeyword":"摩擦学性能"},{"id":"e1e44e59-e062-4378-8cf1-14e84995a461","keyword":"磨损机理","originalKeyword":"磨损机理"}],"language":"zh","publisherId":"gncl200001034","title":"颗粒/复合镀层的摩擦学性能研究","volume":"31","year":"2000"},{"abstractinfo":"本文研究了用常规粉末冶金工艺制备颗粒增强基热沉复合材料的机械物理性能.研究结果表明:采用W和Al2O3颗粒增强基热沉复合材料,可以有效地改善烧结铜材料的硬度和抗拉强度,提高抗高温回复性能;W颗粒增强基热沉复合材料比A12O3颗粒增强基热沉复合材料的热导率要高.","authors":[{"authorName":"刘如铁","id":"6ff95411-22b5-4305-a6b5-5974a21a0ba5","originalAuthorName":"刘如铁"},{"authorName":"李溪滨","id":"999666ca-e140-4e87-a463-c86e36de279f","originalAuthorName":"李溪滨"}],"doi":"10.3969/j.issn.1673-2812.2002.04.018","fpage":"534","id":"8fd6c238-c750-4a5e-ad37-c4a46dc9cc83","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"7bf7e2d9-9312-4bbc-b50f-bc84af59fb05","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"3c63ad22-e938-4f4c-83eb-a3befdacff36","keyword":"复合材料","originalKeyword":"铜基复合材料"},{"id":"65b465fa-9d86-4e48-beef-8ec43ea5e8dc","keyword":"热沉材料","originalKeyword":"热沉材料"}],"language":"zh","publisherId":"clkxygc200204018","title":"颗粒增强基热沉复合材料的研制","volume":"20","year":"2002"},{"abstractinfo":"为了改善 AlN颗粒基体之间的界面结合状况,采用化学镀的方式在 AlN颗粒表面包覆.将表面镀铜的 AlN颗粒与未镀铜的 AlN颗粒采用粉末冶金工艺与铜制备成不同体积分数的 AlNp/Cu系列复合材料.比较了镀铜 AlNp/Cu与未镀铜 AlNp/Cu复合材料的相对密度、硬度、屈服强度、导电性能及摩擦磨损性能.结果表明 ,AlN颗粒表面镀铜增加了与基体的界面结合强度,使复合材料在相对密度、硬度、屈服强度、导电性能及摩擦磨损性能等方面均有不同程度的提高.","authors":[{"authorName":"刘德宝","id":"67afe180-4ac6-4528-94a5-ee0058d9a575","originalAuthorName":"刘德宝"},{"authorName":"崔春翔","id":"c2508c0a-f9a5-41a8-a002-d7c4a40ad93c","originalAuthorName":"崔春翔"},{"authorName":"马叙","id":"2d8b1ffc-5af2-4771-93df-e49772b88475","originalAuthorName":"马叙"}],"doi":"10.3969/j.issn.1004-244X.2005.02.003","fpage":"8","id":"724484a2-81eb-4c1f-80f3-4cda7949933e","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"15dd76c2-3606-4b63-baf3-ef75b1bd02b6","keyword":"AlN","originalKeyword":"AlN"},{"id":"87cd0a46-0332-4678-a075-2ef829d014a8","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"0e561613-97cc-453f-96ad-f0cbca803198","keyword":"复合材料","originalKeyword":"铜基复合材料"},{"id":"c6e5823c-9af0-4c54-bf3b-da31bd77f7f4","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"bqclkxygc200502003","title":"氮化铝颗粒表面镀铜及其增强复合材料","volume":"28","year":"2005"},{"abstractinfo":"用水合联肼作还原剂研制成亲水纳米颗粒,用琥珀酸二异辛酯磺酸钠/丙三醇/正庚烷反胶束体系合成出憎水纳米颗粒,并通过透射电镜和紫外光谱考察了制得的纳米颗粒样品.用憎水纳米颗粒及亲水纳米颗粒与聚乙烯醇缩丁醛构成复合固酶膜基质,用溶胶-凝胶法固定葡萄糖氧化酶,构建葡萄糖生物传感器.实验结果表明,纳米颗粒可大幅度提高固定化酶的催化活性,响应电流从相应浓度的几十纳安增强到几千纳安从理论和实验上证明了纳米颗粒对固定酶的作用,讨论了纳米颗粒对酶催化性能的改善作用,为纳米颗粒在生物传感器领域中的应用提供了可供参考的实验和理论依据.","authors":[{"authorName":"任湘菱","id":"7fc2168a-f73c-49c5-8556-5f7b3bafb092","originalAuthorName":"任湘菱"},{"authorName":"唐芳琼","id":"318dbc1f-0908-426d-a146-3dc1cf3edd88","originalAuthorName":"唐芳琼"}],"doi":"","fpage":"455","id":"d10cd82b-cf70-426a-a0ae-4a01f26e590d","issue":"5","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"84294bd2-7521-4dfc-a6c1-80136b84ea2b","keyword":"纳米颗粒","originalKeyword":"纳米铜颗粒"},{"id":"64353f5b-10f6-4243-8a81-6b01d5887552","keyword":"固定化酶","originalKeyword":"固定化酶"},{"id":"047fd8c4-44b5-4ee1-a81a-0aff5431dd6e","keyword":"葡萄糖氧化酶","originalKeyword":"葡萄糖氧化酶"},{"id":"0e2652f9-0995-4c24-a909-aa03b42361ec","keyword":"生物传感器","originalKeyword":"生物传感器"}],"language":"zh","publisherId":"cuihuaxb200005020","title":"纳米颗粒-酶-复合功能敏感膜生物传感器","volume":"21","year":"2000"},{"abstractinfo":"采用粉末冶金方法制备了SiC和石墨混杂增强复合材料,研究了该复合材料在不同载荷条件下的摩擦磨损性能,并通过观察磨损表面形貌,研究其磨损机理.结果表明:在摩擦过程中,SiC颗粒作为载荷的主要承载单元,起到了较好的硬质承载支点的作用,石墨颗粒则发挥了较好的自润滑减摩效果,二者协同作用明显提高了复合材料的耐磨性;该复合材料的磨损机理主要以磨粒磨损为主.","authors":[{"authorName":"周永欣","id":"28b2f412-d213-441b-aded-2e253c1d6ff5","originalAuthorName":"周永欣"},{"authorName":"徐飞","id":"f3e802a9-53a3-49c7-958b-73b34ab912b5","originalAuthorName":"徐飞"},{"authorName":"吕振林","id":"08230027-d37f-4e31-9d8d-ecdf060b6698","originalAuthorName":"吕振林"},{"authorName":"马雷","id":"3c7eb84d-4870-49cf-90cf-8355c5848733","originalAuthorName":"马雷"},{"authorName":"程逞","id":"30398f02-2903-4fb8-bec7-2dc57e69512c","originalAuthorName":"程逞"},{"authorName":"盛锟","id":"731fe456-9935-40c4-8235-04cdc9834090","originalAuthorName":"盛锟"}],"doi":"","fpage":"90","id":"f6cbb08b-4927-4ae9-b388-0085d6232be9","issue":"2","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"e8648e8c-8674-4ae6-b8bb-0da354b20603","keyword":"SiC","originalKeyword":"SiC"},{"id":"b7a735fd-c622-417c-886d-c0c21922bf40","keyword":"石墨","originalKeyword":"石墨"},{"id":"36de54ff-8f55-4e71-8f27-014671c3dac0","keyword":"复合材料","originalKeyword":"铜基复合材料"},{"id":"b3e6ed11-4a75-438c-95e4-c3557d11be3f","keyword":"摩擦磨损性能","originalKeyword":"摩擦磨损性能"}],"language":"zh","publisherId":"jxgccl201502020","title":"SiC和石墨颗粒混杂增强复合材料的摩擦磨损性能","volume":"39","year":"2015"},{"abstractinfo":"采用空气加压渗流技术制备了宏观石墨颗粒增强基形状记忆合金复合材料,利用多功能内耗仪研究了其阻尼行为及阻尼机制。结果表明:复合材料的阻尼性能比基体合金的大大提高,其内耗随石墨颗粒体积分数的增加、石墨颗粒粒径的减小和应变振幅的增大而增大;基体和石墨颗粒的本征阻尼、位错阻尼和颗粒/基体界面阻尼是复合材料的主要阻尼机制。","authors":[{"authorName":"王金香","id":"2f95676d-a6bc-44f5-a6ba-ff50173df30e","originalAuthorName":"王金香"},{"authorName":"彭小波","id":"4d70af82-0dba-4941-9ffa-219f0f7c294e","originalAuthorName":"彭小波"},{"authorName":"韩福生","id":"07443f6f-7f42-4903-ae36-518939766032","originalAuthorName":"韩福生"}],"doi":"","fpage":"53","id":"70f17c4d-8379-4747-92b0-51f13acf7010","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"700897ae-1880-4807-a579-cadefeedae7e","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"779b4d45-8244-429d-a877-ef8f0846c4b7","keyword":"宏观石墨颗粒","originalKeyword":"宏观石墨颗粒"},{"id":"8fe207e2-82f4-4157-8784-6937964cb77f","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"093fef26-eb7a-4df8-9f0d-4d49b0c1be3f","keyword":"阻尼","originalKeyword":"阻尼"}],"language":"zh","publisherId":"jxgccl201207015","title":"宏观石墨颗粒增强基形状记忆合金复合材料的阻尼行为","volume":"36","year":"2012"}],"totalpage":4788,"totalrecord":47873}