{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为研究等离子喷涂设备送粉参量变化对粉末粒子运动行为的影响,通过数学计算给出了粉末粒子初速度及运行轨迹的一些解析计算结果.结果表明粉末粒子喷出初速度随送粉气流量的增大呈线性增大,随送粉管直径增大呈指数减小,而且与密度和粒径的指数幂成反比关系.当粉末粒子粒径为75μm时,Ni金属粉末的最佳送粉参量为:送粉气流量0.2m3/h,送粉管直径1.5mm;Al2O3陶瓷粉末最佳送粉参量为:送粉气流量0.3m3/h,送粉管直径1mm.该项研究工作为选择最佳送粉参量和控制粉末粒子在等离子流场中的运动提供了依据.","authors":[{"authorName":"王赫莹","id":"05b94103-6fb7-45bb-9a79-581b7059e4fc","originalAuthorName":"王赫莹"},{"authorName":"李德元","id":"0b3eab89-06a9-4ae5-bd94-2d79a8112262","originalAuthorName":"李德元"},{"authorName":"吴卫枫","id":"5bde5c94-72ed-45ce-99f0-ffd805710fac","originalAuthorName":"吴卫枫"}],"doi":"10.3969/j.issn.1001-3660.2005.05.013","fpage":"40","id":"8615bc5a-4fb4-4829-8f3c-87deb80e3a36","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"87ce05bb-b0ff-4661-abf3-66f9a80ba1e0","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"85646b75-09d3-4771-9a09-0deb6c007d5f","keyword":"送粉参量","originalKeyword":"送粉参量"},{"id":"f77ecde8-8480-4bbb-838e-94b827d280b7","keyword":"粉末粒子","originalKeyword":"粉末粒子"},{"id":"605a2e04-490a-436d-ab41-0ba08b00f715","keyword":"运动行为","originalKeyword":"运动行为"}],"language":"zh","publisherId":"bmjs200505013","title":"等离子喷涂送粉参量对粉末粒子运动行为的影响分析","volume":"34","year":"2005"},{"abstractinfo":"以纳米CaCO3浆料和丁苯胶乳(SBR)为原料,将两者直接混合制得了纳米CaCO3填充型粉末橡胶复合粒子。研究表明,当粉末化体系中纳米CaCO3和SBR的重量比≥1时,纳米CaCO3兼具隔离剂和凝聚剂的作用。复合粒子的粒径随着纳米CaCO3填充量的增加而减小,所制得的复合粒子的颗粒尺寸均小于200tLm,纳米CaCO3以50nm原始粒径均匀分散在复合粒子中;其成粉机理为纳米CaCO3表面的钙离子和胶乳粒子表面的负离子发生键合作用,破乳而形成粉末橡胶复合粒子。","authors":[{"authorName":"张周达","id":"ab66423b-9cd4-426b-9b0a-c5b18f2a4bf9","originalAuthorName":"张周达"},{"authorName":"陈雪梅","id":"7b4efac3-a7d0-4e67-894f-48ddd4c5c122","originalAuthorName":"陈雪梅"},{"authorName":"马新胜","id":"3329dbb3-a9c3-4940-83f1-3d93e454e0c2","originalAuthorName":"马新胜"}],"doi":"","fpage":"844","id":"02cdd0a2-0f4a-469e-a92d-d0bd76ddd097","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"709d7872-0ac9-402e-82a3-35f77f995e05","keyword":"纳米CaCO3","originalKeyword":"纳米CaCO3"},{"id":"01c29be3-0710-4c48-849b-14394dcc301c","keyword":"填充型粉末橡胶","originalKeyword":"填充型粉末橡胶"},{"id":"9c202508-109a-4813-a828-920a5af54837","keyword":"复合粒子","originalKeyword":"复合粒子"},{"id":"6ede2f6e-2206-4c5a-820c-18deb8d6621f","keyword":"成粉机理","originalKeyword":"成粉机理"}],"language":"zh","publisherId":"clkxygc201206008","title":"纳米CaCO3填充型粉末橡胶复合粒子的制备及成粉机理","volume":"30","year":"2012"},{"abstractinfo":"以纳米CaCO3浆料和丁苯胶乳、羧基丁苯胶乳、丁腈胶乳为原料,采用共凝聚法分别制备了三种纳米CaCO3-粉末橡胶复合粒子,并制备了三种纳米CaCO3-粉末橡胶/聚氯乙烯(PVC)复合材料,系统研究了复合粒子含量对PVC力学性能的影响,并探讨了复合粒子的增强增韧机制。结果表明:复合粒子在PVC树脂中分散均匀,复合粒子中的纳米CaCO3粒子以“裸露态”和橡胶“包裹态”两种形式存在于PVC基体中;三种复合粒子均能显著提高PVC的缺口冲击强度,纳米CaCO3-粉末丁腈橡胶(CaCO3-NBR)能同时起到增强增韧的效果,而纳米CaCO3-粉末丁苯橡胶(CaCO3-SBR)在提高缺口冲击强度的同时也损失了PVC原有的刚性,使其弯曲模量和拉伸强度大幅度降低,纳米CaCO3-粉末羧基丁苯橡胶(CaCO3-X—SBR)的改性效果鉴于前两者之间;复合粒子与PVC基体的相容性是影响复合粒子增强增韧改性效果的决定性因素,相容性好的复合粒子能同时起到增强增韧的效果。","authors":[{"authorName":"张周达","id":"654d0f3b-669d-4586-aae4-3414c3e3a200","originalAuthorName":"张周达"},{"authorName":"陈雪梅","id":"83068a53-a325-4dd5-8ca8-3433ac563299","originalAuthorName":"陈雪梅"},{"authorName":"董源","id":"dfcd6e9f-68c1-4804-a2eb-c4395832c011","originalAuthorName":"董源"},{"authorName":"陈西知","id":"8b1e975e-3ab8-4a95-a85a-21e367e7db60","originalAuthorName":"陈西知"},{"authorName":"马新胜","id":"6cb72268-3b8b-41f7-8545-97e30415d370","originalAuthorName":"马新胜"}],"doi":"","fpage":"19","id":"d9e336e9-e175-4cf6-9b08-4431f96e19e4","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"3f42c0c8-559b-4059-bbd3-aacac6edf148","keyword":"纳米CaCO3","originalKeyword":"纳米CaCO3"},{"id":"885841c6-70cf-4078-bfac-9ae19aba46f4","keyword":"粉末橡胶","originalKeyword":"粉末橡胶"},{"id":"b3feb8d2-440f-420c-b043-b959da5cd4ca","keyword":"聚氯乙烯","originalKeyword":"聚氯乙烯"},{"id":"50a0dc2d-38c6-42b3-be59-f098930390b0","keyword":"增强","originalKeyword":"增强"},{"id":"622f6472-461c-416e-b58a-efc490b769fc","keyword":"增韧","originalKeyword":"增韧"}],"language":"zh","publisherId":"fhclxb201206003","title":"纳米碳酸钙-粉末橡胶复合粒子增强增韧聚氯乙烯","volume":"29","year":"2012"},{"abstractinfo":"研究了纳米TiO2、SiO2及其质量比为1:1的混合物对自制的紫外光固化粉末涂料性能的影响.结果表明,纳米粒子的添加可提高漆膜的硬度、附着力、抗冲击强度,并能明显改善漆膜的耐候性能,但会使光泽度和鲜映性有所降低.当纳米TiO2及m(纳米TiO2):m(纳米SiO2)=1:1的混合物的质量分数分别为3.0%~5.0%和2.0%~4.O%时,可制得综合性能较佳的紫外光固化粉末涂料.","authors":[{"authorName":"周诗彪","id":"1e6878f5-e1c8-44e6-a084-a9c0bf1b6e58","originalAuthorName":"周诗彪"},{"authorName":"张维庆","id":"4f384b1a-9377-4267-88a7-4a72ae53bd5b","originalAuthorName":"张维庆"},{"authorName":"李林","id":"b0dcd383-1cf9-4813-b1b2-834afc4b1383","originalAuthorName":"李林"},{"authorName":"郝爱平","id":"146d21b2-feb1-41ad-82b0-00894e1e819f","originalAuthorName":"郝爱平"},{"authorName":"熊志夫","id":"cc3f698f-1861-4f46-8c07-362da096871d","originalAuthorName":"熊志夫"},{"authorName":"曹水秀","id":"a1c4b1d9-f069-43b7-bb81-d6c0594dd937","originalAuthorName":"曹水秀"}],"doi":"","fpage":"58","id":"4d9d8453-a271-4e73-889f-423e0d96be34","issue":"2","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"7f5c3d46-ca27-4aab-809f-a187f527e5c6","keyword":"粉末涂料","originalKeyword":"粉末涂料"},{"id":"16324161-d41e-434f-be75-80785c3bd96c","keyword":"紫外光固化","originalKeyword":"紫外光固化"},{"id":"01791088-7083-4a5b-9b3d-bc0fb041f9ea","keyword":"纳米TiO2","originalKeyword":"纳米TiO2"},{"id":"765ac0f5-e16f-4da4-8d21-f6186f5cf053","keyword":"纳米SiO2","originalKeyword":"纳米SiO2"},{"id":"2555033f-2303-4104-b7a9-86b3bf428bbc","keyword":"耐候性","originalKeyword":"耐候性"}],"language":"zh","publisherId":"ddyts200802020","title":"无机纳米粒子对UV粉末涂料的影响","volume":"27","year":"2008"},{"abstractinfo":"研究了气体雾化高硅铝合金粉末的中值直径d50与硅粒子尺寸的关系,并用传热学分析了这一现象.结果表明,粉末中值直径d50与硅粒子细化有密切的关系,存在一定的规律,并认为当d50<50μm时,硅粒子尺寸<3μm. ","authors":[{"authorName":"胡锐","id":"45ea7d7b-0828-479f-9fec-d336f5ed1384","originalAuthorName":"胡锐"},{"authorName":"邱嵩","id":"e068770c-16d5-41d7-8d64-396307b95d1c","originalAuthorName":"邱嵩"},{"authorName":"李进学","id":"7cbeb373-fefe-43fe-b369-39b64162ec12","originalAuthorName":"李进学"},{"authorName":"毛志英","id":"c2f97c0f-cc34-4ad3-b278-eaccc4c7ac40","originalAuthorName":"毛志英"},{"authorName":"商宝禄","id":"b5d80738-cf67-4ff3-80b2-10c2fd2ce6bf","originalAuthorName":"商宝禄"}],"doi":"10.3969/j.issn.1004-244X.2002.02.006","fpage":"23","id":"00d5774e-fb64-4959-8191-3a10c4ffcc4e","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"33279db5-3ff2-4814-acaa-92fab2e5e6b8","keyword":"气体雾化","originalKeyword":"气体雾化"},{"id":"8c5c7252-d650-40d5-aff5-7a542d08d780","keyword":"高硅铝粉末","originalKeyword":"高硅铝粉末"}],"language":"zh","publisherId":"bqclkxygc200202006","title":"快速凝固高硅铝合金粉末中值直径d50对硅粒子尺寸的影响","volume":"25","year":"2002"},{"abstractinfo":"目的 提高碳化钨涂层的性能.方法 运用Fluent软件进行超音速火焰喷涂焰流的仿真模拟,得出喷涂距离-焰流速度、喷涂距离-焰流温度曲线.采用粒子飞行监测仪对三组不同粒度(粒子平均直径分别为21.72、32.92、42.56 μm)WC-17Co粉末在超音速火焰喷涂过程中的飞行状态进行监测,并得出喷涂距离-速度、喷涂距离-温度曲线,揭示喷涂过程中焰流速度、温度对粒子速度和温度的影响.通过扫描电镜观察分析不同粒度WC-17Co粉末撞击镍718合金基体后的扁平化程度,测量不同粒度WC-17Co涂层的孔隙率,比较涂层致密度的差异,同时采用压痕法测量涂层的硬度.结果 WC-17Co粒子飞行速度和温度随喷涂距离的增加呈先增大后减小的趋势,且粒子飞行速度和温度随粉末粒径的增大而减小,根据粉末粒径的不同,其速度峰值在690~810 m/s之间变化,温度峰值在1890~2050℃之间变化.直径越小的粒子撞击基体后的扁平率越高,扁平率在1.94~2.35之间.WC-17Co涂层的孔隙率随粒子直径的增大而升高,涂层的硬度与孔隙率成反比,涂层努氏硬度在1072~1284HK之间.结论 超音速火焰喷涂过程中,碳化钨粉末的飞行速度和温度呈先增大后减小的趋势,且飞行速度和温度与粒子直径大小成反比.碳化钨涂层的致密度与硬度随粒子直径的增大而减小.","authors":[{"authorName":"刘延宽","id":"b3e20f9f-cce7-4b89-9e91-963b240ff7aa","originalAuthorName":"刘延宽"},{"authorName":"王志平","id":"aedf5221-c163-4123-a33e-2e59fed0c2f8","originalAuthorName":"王志平"},{"authorName":"丁坤英","id":"df3d9af2-41c8-48a0-9f9f-087bfb42458b","originalAuthorName":"丁坤英"}],"doi":"10.16490/j.cnki.issn.1001-3660.2016.06.012","fpage":"76","id":"eebfdfdb-87eb-42c9-87b0-b261a631a3f8","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"9546efb0-2d8d-4027-896b-17a223a4818e","keyword":"超音速火焰喷涂","originalKeyword":"超音速火焰喷涂"},{"id":"7074aadd-458f-4c90-afb5-90a82323d9e5","keyword":"碳化钨-17钴","originalKeyword":"碳化钨-17钴"},{"id":"789b27dd-a5dd-40f9-941d-2a8659001304","keyword":"焰流特性","originalKeyword":"焰流特性"},{"id":"76525f39-7e38-4b8e-8ad5-8783f6813f77","keyword":"粒子飞行状态","originalKeyword":"粒子飞行状态"},{"id":"01255bf7-9e4a-4f59-b46e-a770ced9753a","keyword":"涂层","originalKeyword":"涂层"},{"id":"1aca11c5-5c6b-4fa2-8feb-42bb461e930a","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"1486a22c-1cf8-4a2c-b497-ccc7a4a5c15d","keyword":"努氏硬度","originalKeyword":"努氏硬度"}],"language":"zh","publisherId":"bmjs201606012","title":"WC-17Co粉末尺寸对粒子飞行状态与涂层性能的影响分析","volume":"45","year":"2016"},{"abstractinfo":"使用不同粒度的铁粉, 采用电流直加热动态热压烧结工艺制备了10%(体积分数)的SiC颗粒增强铁基复合材料, 研究了铁粉与SiC粒子颗粒级配对复合材料显微组织和力学性能的影响. 结果表明, SiC粒子与铁粉的颗粒级配, 显著影响复合材料基体中增强粒子的分布状况和力学性能. 建立了粒子分布的双基体颗粒级配模型, 只有铁粉中一次颗粒与二次颗粒的粒径比为6.5、二次颗粒含量为4.6\\%、铁粉一次颗粒与SiC的粒度比值为15.9时, SiC颗粒才能很好地填充铁粉间隙并均匀地分布在基体中, 复合材料将具有较高的力学性能. 模型计算的结果和实验结果相符合.","authors":[{"authorName":"王耀勉宗亚平李杰","id":"994e0e18-290c-4185-b2f4-c75828a77282","originalAuthorName":"王耀勉宗亚平李杰"}],"categoryName":"|","doi":"","fpage":"466","id":"83a5e522-3067-4341-a5d8-b772f0cac146","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"10bac7f1-164b-4795-9f0e-038f1a9ddab2","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"aea22ab8-1fed-451b-8d13-9f33b9f6e9af","keyword":"particle distribution model","originalKeyword":"particle distribution model"},{"id":"752cfb63-53e6-423b-9759-7f258352d464","keyword":"size match","originalKeyword":"size match"},{"id":"8cdd74f4-2896-4795-9a83-e48db5e6b2d8","keyword":"specimen current heating dynamic hot press sintering","originalKeyword":"specimen current heating dynamic hot press sintering"},{"id":"33925a29-56a1-447d-8f3f-3557facbe44c","keyword":"mechanical properties","originalKeyword":"mechanical properties"}],"language":"zh","publisherId":"1005-3093_2009_5_9","title":"基体粉末与增强粒子的粒度级配对SiCp/Fe性能的影响","volume":"23","year":"2009"},{"abstractinfo":"以Cu(NO3)2·3H2O与Na2CO3·10H2O为原料沉淀法制得纳米CuO前驱体--碱式碳酸铜,在不同温度(200℃、300℃、400℃、500℃、600℃)下分别焙烧2h得到CuO粉末后,直接倒入室温下的正丁醇溶液中,发生氧化-还原反应,得到组成不同的各种产物.经XRD、TEM、SEM研究表明,产物的组成随上述热处理温度的改变而变化,500℃时可得到纯的纳米铜粉,600℃时可得到Cu2O-Cu核-壳型纳米粒子.","authors":[{"authorName":"郑惠梅","id":"ede1b1da-67e2-46e2-96be-b43b4143a380","originalAuthorName":"郑惠梅"},{"authorName":"杨水彬","id":"e7db7d95-348e-4f48-ba00-7bef2d6d0ba9","originalAuthorName":"杨水彬"},{"authorName":"刘孝恒","id":"4dfbba02-86ef-4704-9a31-bab1bf1819f8","originalAuthorName":"刘孝恒"},{"authorName":"杨绪杰","id":"c8098c24-0d4e-4582-bc57-e8b17cd92ef5","originalAuthorName":"杨绪杰"},{"authorName":"汪信","id":"6a272d5c-95e4-48b6-b85d-65ae47c2d807","originalAuthorName":"汪信"}],"doi":"","fpage":"3104","id":"5f3e310c-8db0-44f5-95b1-1d134c84d0fa","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"72cad44f-be51-4b8c-b72a-db6a0fa963e9","keyword":"铜纳米粒子","originalKeyword":"铜纳米粒子"},{"id":"57991258-c866-40b2-8e1a-98247bcfd037","keyword":"Cu2O-Cu核-壳型纳米粒子","originalKeyword":"Cu2O-Cu核-壳型纳米粒子"},{"id":"7726bcdf-7230-4ebc-8cee-26354a76ef27","keyword":"正丁醇","originalKeyword":"正丁醇"}],"language":"zh","publisherId":"gncl2004z1873","title":"新方法制备Cu超细粉末以及Cu2O-Cu核-壳型复合粒子","volume":"35","year":"2004"},{"abstractinfo":"选用Cr3C2-NiCr粉末、Ni包MoS2粉、Ni60粉末以及3种粉末的混合粉末,采用超音速火焰喷涂技术制备涂层试样.研究了异种粒子共喷对涂层的显微组织结构特征和涂层的结合强度的影响.研究结果表明:与喷涂单一粒子相比,单枪共喷异种粒子在堆叠过程中更容易形成孔隙,造成涂层组织疏松;与单一粒子涂层相比,单枪共喷异种粒子涂层的结合强度明显下降;异种粒子共喷涂层的结合强度与异种粒子的配比相关.","authors":[{"authorName":"肖明颖","id":"8b354bfd-1e74-4c66-bcf4-61a0c7f221dd","originalAuthorName":"肖明颖"},{"authorName":"王引真","id":"36af27ee-1dd3-4324-8e7c-8824ae30a923","originalAuthorName":"王引真"},{"authorName":"秦清彬","id":"72bd1f50-ab89-40cf-9857-de8b082f3a9f","originalAuthorName":"秦清彬"},{"authorName":"范振红","id":"30349d2b-abce-47c5-a4db-a67e83aaf850","originalAuthorName":"范振红"}],"doi":"10.3969/j.issn.1001-3660.2007.02.004","fpage":"9","id":"dcf4b189-4656-4990-9ed7-dde374bd951e","issue":"2","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"05763930-56db-4db0-99d9-34eadea00206","keyword":"复合涂层","originalKeyword":"复合涂层"},{"id":"2180117c-3eae-4399-b5bb-c64a905f6bc7","keyword":"单枪共喷","originalKeyword":"单枪共喷"},{"id":"66606ad2-70f0-4047-8792-3a209e826dac","keyword":"超音速火焰喷涂","originalKeyword":"超音速火焰喷涂"},{"id":"7f99a8c0-d13c-49a7-9de2-8b25e47517af","keyword":"涂层结构","originalKeyword":"涂层结构"},{"id":"948ab20d-5da2-450a-923b-355032cb35d6","keyword":"结合强度","originalKeyword":"结合强度"}],"language":"zh","publisherId":"bmjs200702004","title":"单枪共喷异种粒子涂层结构及结合强度分析","volume":"36","year":"2007"},{"abstractinfo":"作者采用蒸发凝聚法制奋了金属基超微粉末,采用化学反应法制备了氧化物超微粉末,深入研究了超微粉末的制备工艺.设计了一种新型的超微粉末收集器,研究了超微合金粉末中合金相的生成规律和机理,解决了超微粉末制备过程中的一系列难题,实现了批量制备超微粉末.","authors":[{"authorName":"陈振华","id":"a31b4fef-1c78-460e-a5ed-755b84eb6cb5","originalAuthorName":"陈振华"},{"authorName":"严红革","id":"90adedcb-b18a-4027-a14d-99e1168a076a","originalAuthorName":"严红革"},{"authorName":"段学臣","id":"9c3609f1-9710-44ef-b169-d557eb331926","originalAuthorName":"段学臣"}],"doi":"","fpage":"36","id":"4d7f20f5-6cba-4c7d-9bae-8ba77360626e","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9a016142-487b-47dc-b0d1-ab885455b07d","keyword":"超微粉末","originalKeyword":"超微粉末"},{"id":"78b2386a-e3b4-4587-ad95-a063b15d1c23","keyword":"蒸发凝聚","originalKeyword":"蒸发凝聚"},{"id":"1a516d05-e304-4b1f-84a5-b797a7554a3b","keyword":"醇盐水解","originalKeyword":"醇盐水解"},{"id":"855a2de8-ac7a-4ead-97b2-e5fbefe187b4","keyword":"化学沉淀","originalKeyword":"化学沉淀"}],"language":"zh","publisherId":"gncl200001011","title":"超微粉末的研究","volume":"31","year":"2000"}],"totalpage":1402,"totalrecord":14012}