{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对异种组配连续驱动摩擦,通过引入热量分配系数得到了焊接稳态阶段粘塑性区平均温度的解析模型,利用此解析模型计算了TC4/TC 17和TC11/TC17两种异种钛合金组配在恒定焊接转速、变轴向压力和恒定轴向压力、变焊接转速下的焊接稳态阶段粘塑性区平均温度,并将计算结果与用红外热成像仪记录的实际温度进行了对比.结果表明:当焊接转速一定时,平均温度随着轴向压力的增加而下降;当轴向压力一定时,平均温度随着焊接转速的增大而上升;当焊接参数一定时,异种组配TC17侧的稳态阶段粘塑性区平均温度均低于TC4或TC11侧.在实验所处范围内平均温度的计算值和实测值吻合良好,其偏差均不超过7%,表明本文提出的解析模型是可靠的.","authors":[{"authorName":"王莉敏","id":"bc00ee2d-dc23-495e-a3a2-aeba547166a6","originalAuthorName":"王莉敏"},{"authorName":"李京龙","id":"797d230a-1b40-448c-a4ab-5e06d4e85a44","originalAuthorName":"李京龙"},{"authorName":"熊江涛","id":"cd7800dc-c4a3-4cbe-b386-362fe068bcbf","originalAuthorName":"熊江涛"},{"authorName":"魏艳妮","id":"dd60ffcc-88b4-4c3c-84cc-6a4fdcd43add","originalAuthorName":"魏艳妮"},{"authorName":"张赋升","id":"6dc70bdd-e31b-4ec5-b302-d4e3cf75e75d","originalAuthorName":"张赋升"}],"doi":"","fpage":"501","id":"30373e0a-0d37-446f-8259-70dc2318c215","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"9fe14036-5b2e-4c91-9ba2-887f147f42d2","keyword":"材料合成与加工工艺","originalKeyword":"材料合成与加工工艺"},{"id":"eeae3fe7-d49b-4156-aa10-f4d06f865e41","keyword":"连续驱动摩擦平均温度","originalKeyword":"连续驱动摩擦焊平均温度"},{"id":"4d225d6a-f7b6-441d-b76d-3d3096c7b0da","keyword":"解析模型","originalKeyword":"解析模型"},{"id":"4f02c170-5d58-4169-b79a-236e42855755","keyword":"TC4/TC17","originalKeyword":"TC4/TC17"},{"id":"e4e5f338-22b7-4278-b92f-97b3e75732e6","keyword":"TC11/TC17","originalKeyword":"TC11/TC17"}],"language":"zh","publisherId":"clyjxb201305009","title":"异种钛合金连续驱动摩擦稳态阶段粘塑性区平均温度的解析计算","volume":"27","year":"2013"},{"abstractinfo":"中厚板厚度方向的平均温度是轧后冷却过程中的重要控制参数,它直接影响轧后加速系统对终冷温度和冷却速度的控制精度。本文以内能为基础建立平均温度解析模型,通过合理假设建立钢板厚度方向上的多次曲线温度模型和节点间线性比热模型,从而获得任意时刻钢板厚度方向上的平均温度。对各种平均温度的计算结果进行比较可知,基于内能的多次曲线计算模型具有较高的计算精度。将多次曲线平均温度计算模型的应用于加速冷却过程控制系统,结果表明系统控制精度得到较大幅度的提高。","authors":[{"authorName":"王丙兴","id":"1e198674-7b39-4e54-b189-a775b14e3f26","originalAuthorName":"王丙兴"}],"categoryName":"|","doi":"","fpage":"61","id":"b8f4e295-5fb8-4219-bfca-c2af3518f86a","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"c0422c28-1b3b-444e-bb30-5fe11e831216","keyword":"中厚板;加速冷却;平均温度;多次曲线;乔列斯基分解法","originalKeyword":"中厚板;加速冷却;平均温度;多次曲线;乔列斯基分解法"}],"language":"zh","publisherId":"1001-0963_2010_3_5","title":"中厚板平均温度计算方法的研究与应用","volume":"22","year":"2010"},{"abstractinfo":"中厚板厚度方向平均温度是轧后层流冷却过程的重要控制参数,它直接影响终冷温度和冷却速度的控制精度.以内能为基础建立平均温度解析模型,通过合理假设建立钢板厚度方向上的温度和比热解析模型,计算任意时刻钢板的平均温度.对各种计算结果进行比较可知.基于内能的多次曲线算法具有较高的计算精度.将计算模型应用于层流冷却过程控制系统,结果表明系统控制精度得到较大幅度的提高.","authors":[{"authorName":"王君","id":"5770d350-1e89-4dc6-8d00-9c8509d9c3a0","originalAuthorName":"王君"},{"authorName":"王丙兴","id":"fe47b848-25e1-4859-8efe-d9c3b1fd2362","originalAuthorName":"王丙兴"},{"authorName":"霍文丰","id":"8b5b2b95-84c8-4382-ac58-f454a9d2d18e","originalAuthorName":"霍文丰"},{"authorName":"张殿华","id":"7ee4f043-f27b-4e96-a8b8-282c128c4918","originalAuthorName":"张殿华"},{"authorName":"王国栋","id":"e558101e-e6dc-4c44-a946-f66c1a41d64b","originalAuthorName":"王国栋"}],"doi":"","fpage":"61","id":"449c392e-ef49-40da-877e-ebc10e3d6125","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"9f3493bf-9da7-4927-b214-30bec87d7229","keyword":"中厚板","originalKeyword":"中厚板"},{"id":"21d624fd-ce84-4c52-89ed-5099004b5531","keyword":"层流冷却","originalKeyword":"层流冷却"},{"id":"84929b64-696d-429b-9ba0-1785b062bbe1","keyword":"平均温度","originalKeyword":"平均温度"},{"id":"a52571e9-383b-4cac-a92d-84ec99e150d0","keyword":"多次曲线","originalKeyword":"多次曲线"},{"id":"9ccce7f2-0ca4-497e-ae75-c5f44f975b84","keyword":"乔列斯基分解法","originalKeyword":"乔列斯基分解法"}],"language":"zh","publisherId":"gtyjxb201003015","title":"中厚板平均温度计算方法的研究与应用","volume":"22","year":"2010"},{"abstractinfo":"通过引入接头形貌特征参量表征因子(取粘径比α=粘合区长度/原始直径,比例因子η=外缘热影响区宽度/中心热影响区宽度),研究了摩擦压力和摩擦时间等工艺参数对45号钢连续驱动摩擦焊接头的形貌及力学性能的影响.结果表明,随着摩擦压力的升高粘径比α先升高后降低,而比例因子η持续升高;当摩擦压力为60 MPa时,随着摩擦时间的延长粘径比α不断增大,而比例因子η则不断减小.当综合因子δ(δ=η/α)为1.15-1.31时摩擦焊接头的热输入量适中,接头的力学性能良好,可作为45号钢连续驱动摩擦焊接头良好焊接工艺规范的制定原则.","authors":[{"authorName":"李鹏","id":"12d738a2-850c-4aae-bb3a-387d46dc978e","originalAuthorName":"李鹏"},{"authorName":"李京龙","id":"93abd5e1-bcdd-4c59-8934-ea64f56d3874","originalAuthorName":"李京龙"},{"authorName":"梁力","id":"f7e76ffc-29d6-49af-a415-254708421da0","originalAuthorName":"梁力"},{"authorName":"熊江涛","id":"ccafaf6d-da42-439c-9dc2-143fcc2e601e","originalAuthorName":"熊江涛"},{"authorName":"张赋升","id":"76d60aa6-38cc-4dd5-997c-b309b3196e22","originalAuthorName":"张赋升"},{"authorName":"钱锦文","id":"6c8db3d3-2764-46b7-bcee-bf6c6d8de311","originalAuthorName":"钱锦文"}],"doi":"","fpage":"497","id":"cd0ae914-4e71-4c97-a4f0-5aa21667dfdf","issue":"7","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"57973074-4231-44df-bad5-9111d980d8b8","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"28bec0a6-7609-4d6e-a75f-24e3527e51ba","keyword":"特征形貌","originalKeyword":"特征形貌"},{"id":"2f2f4d73-49f7-4960-aed9-cfc397821b83","keyword":"连续驱动摩擦","originalKeyword":"连续驱动摩擦焊"},{"id":"ca305c6c-406d-44c8-a57f-d352f763b374","keyword":"45号钢","originalKeyword":"45号钢"},{"id":"31a997ab-497f-4e72-b61f-128a484de946","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clyjxb201407003","title":"连续驱动摩擦焊接头的特征形貌和性能","volume":"28","year":"2014"},{"abstractinfo":"采用连续驱动摩擦技术对45#中碳钢进行连接,采集焊接过程的摩擦扭矩,并对接头进行了显微组织观察和显微硬度分析.结果表明:转速越高,扭矩上升速度越慢,峰值越低,摩擦压力对扭矩影响不明显;摩擦焊接头由焊缝区、热力影响区和母材区组成,焊缝区为受后余热长大形成的粗晶组织,热力影响区为正火后的细晶组织;接头显微硬度沿轴向由摩擦界面向母材呈下降趋势,不同位置处和不同规范参数下的硬度值差异明显.","authors":[{"authorName":"杨健","id":"4bd9d655-54e8-42b1-8808-417c947469b7","originalAuthorName":"杨健"}],"doi":"","fpage":"82","id":"3dc5fd63-11ca-4e37-beed-3da4fcaf77e4","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"3b2150a2-6465-41bc-bc64-dcbe1d5bcd4c","keyword":"大直径","originalKeyword":"大直径"},{"id":"c9eeb36f-b12c-43df-9941-6e210d1eb653","keyword":"中碳钢","originalKeyword":"中碳钢"},{"id":"21b8cf60-5c2f-4318-8b61-7c5fe718f366","keyword":"连续驱动摩擦","originalKeyword":"连续驱动摩擦焊"},{"id":"f970e044-5f15-4869-ad32-55aed529799c","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"a32310d8-f71b-4c1e-916f-ecb23aa06487","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"bqclkxygc201506023","title":"大直径中碳钢连续驱动摩擦焊接头组织与性能研究","volume":"38","year":"2015"},{"abstractinfo":"本文着重介绍了6063 -T6铝合金管连续驱动摩擦焊接工艺,以及6063 -T6铝合金管采用连续驱动摩擦焊接的结果及分析,表明只要选择合理的焊接工艺参数,在6063 -T6铝合金管批量生产中采用连续驱动摩擦焊接是可行的.","authors":[{"authorName":"王晓贞","id":"7d147a43-5b6f-40e9-ba03-a72eb59b608b","originalAuthorName":"王晓贞"},{"authorName":"王路平","id":"c00bed16-cbb4-4d62-97b2-3948fdf9a97f","originalAuthorName":"王路平"},{"authorName":"韩丽娟","id":"691e376c-e2b7-4b70-bfc6-81a30338472b","originalAuthorName":"韩丽娟"}],"doi":"10.3969/j.issn.1003-1545.2012.03.005","fpage":"16","id":"1bdb5aba-70ce-4bff-914a-0daa453d5a04","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"2a71dbb7-81ab-46ae-85ec-2cfc3023bdc4","keyword":"连续驱动","originalKeyword":"连续驱动"},{"id":"9291f0be-6fa2-4fe4-9ff9-d72a60851b2d","keyword":"焊接","originalKeyword":"焊接"},{"id":"d24bb25b-3f45-4da5-9886-f882f70e02f3","keyword":"焊接工艺","originalKeyword":"焊接工艺"},{"id":"efaaf391-c2bb-454c-97fb-6ac95be67d2f","keyword":"摩擦","originalKeyword":"摩擦"}],"language":"zh","publisherId":"clkfyyy201203005","title":"6063-T6铝合金管连续驱动摩擦焊接工艺","volume":"27","year":"2012"},{"abstractinfo":"自1991年英国焊接研究所(TWI)发明了搅拌摩擦(FSW)以来,许多学者对搅拌摩擦焊接过程中的温度场分布进行了大量的研究.随着人们时搅拌摩擦焊接物理机制的深入了解,描述其温度场分布的模型也越来越精确,由最初仅考虑摩擦产热,发展到综合考虑摩擦产热和材料塑性变形产热,近年来一些研究者更是尝试建立热力耦合的模型来描述其温度场分布.简要叙述了关于搅拌摩擦温度场研究的发展历程及研究现状.","authors":[{"authorName":"殷鹏飞","id":"1e860e1b-ca69-4176-b800-0d057216d286","originalAuthorName":"殷鹏飞"},{"authorName":"张蓉","id":"621ee17b-f4b3-4c38-9c1a-ce26e5abc74b","originalAuthorName":"张蓉"},{"authorName":"熊江涛","id":"9aa7eb91-0195-49a5-b29d-53484190366d","originalAuthorName":"熊江涛"},{"authorName":"李京龙","id":"93a46ce3-56df-4751-ae39-9ac8ab07a0d4","originalAuthorName":"李京龙"}],"doi":"","fpage":"121","id":"69431ca7-c82c-46d0-8a6c-9c35a57d9c18","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d44b31a4-9071-4af7-a844-6ed417327a7b","keyword":"搅拌摩擦","originalKeyword":"搅拌摩擦焊"},{"id":"893bff79-728c-4d91-9f9a-212ce624b73e","keyword":"温度场","originalKeyword":"温度场"},{"id":"7a0cfe2a-ebae-466d-bd7e-0ca7c394cf33","keyword":"摩擦产热","originalKeyword":"摩擦产热"},{"id":"61d0c7cf-04a8-4137-a55f-3a8fa5e63c5c","keyword":"塑性变形产热","originalKeyword":"塑性变形产热"}],"language":"zh","publisherId":"cldb201217025","title":"搅拌摩擦温度场研究进展","volume":"26","year":"2012"},{"abstractinfo":"建立了搅拌摩擦热源模型,利用有限元分析软件ABAQUS模拟了搅拌摩擦温度场,研究了焊接速度、搅拌头轴肩尺寸和垫板材质对搅拌摩擦焊接过程中试板的温度场的影响.结果表明:随着焊接速度的提高,件上各点的峰值温度降低,经历高温区的时间减少;轴肩摩擦热是热输入的主要来源,随着搅拌头轴肩尺寸的增加,焊缝中心高温区同一等温线上宽下窄的分布特征越来越明显;垫板材质明显影响件底部的温度和分布;适当的焊接参数、搅拌头尺寸及散热条件对获得较好的焊缝质量极为重要.","authors":[{"authorName":"孙巍","id":"2478e8f1-70fb-408d-b546-b8a7ee18a748","originalAuthorName":"孙巍"},{"authorName":"李敬勇","id":"ef4626f0-4f0a-4cd7-ade1-ca640010aa21","originalAuthorName":"李敬勇"},{"authorName":"王艳辉","id":"44b80d51-09ec-43dd-922d-0837d60089d8","originalAuthorName":"王艳辉"}],"doi":"","fpage":"44","id":"7a6f78a7-8ca7-4148-8f52-4ad72e71fd15","issue":"6","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"744b1286-aedf-40bb-8e1a-9706e3309c2a","keyword":"搅拌摩擦","originalKeyword":"搅拌摩擦焊"},{"id":"100ebda6-fe62-4782-ab83-95ef3c47cc40","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"2d4ee0e9-a2da-49a5-9c3f-e4148c83de7a","keyword":"温度场","originalKeyword":"温度场"},{"id":"8e0486d9-92c6-48e6-9d4c-eae5e405afb2","keyword":"温度曲线","originalKeyword":"温度曲线"}],"language":"zh","publisherId":"clkfyyy201406008","title":"纯铝板搅拌摩擦温度场数值模拟","volume":"29","year":"2014"},{"abstractinfo":"采用热电偶测温技术系统测定了6mm6082铝合金双轴肩搅拌摩擦试板各特征点的温度变化曲线,分析了双轴肩搅拌摩擦焊过程中焊接试板不同区域的温度场分布特征.双轴肩搅拌摩擦搅拌头上、下轴肩同时产热,比传统搅拌摩擦产热量大,且热输入方式及试板接触散热条件也有很大不同,因此,其稳定焊接速度较大,从而导致双轴肩搅拌摩擦试板温度场分布特征与传统搅拌摩擦明显不同.双轴肩搅拌摩擦焊过程分为加速焊接和稳定焊接两个阶段,起始阶段,随着焊接速度的增加,靠近起始端测温点的温度逐渐升高,而远离起始端各测温点的温度升温则非常缓慢,当焊接速度达到较高的稳定焊接速度,搅拌头接近后续各测温点时,其温度值瞬间急剧升高,然后随着搅拌头的远离,温度值逐渐下降.不同区域测温点温度测试结果显示,靠近下轴肩试板测温点的温度高于靠近上轴肩试板、后退侧的温度明显高于前进侧;与单轴肩搅拌摩擦焊接试板相同,距离焊缝越近的位置温度上升和下降的越剧烈,峰值温度越高;焊接速度提高,各测温点的峰值温度依次降低,随着测温点远离焊缝中心,焊接速度对其温度分布的影响作用逐渐减弱.","authors":[{"authorName":"李敬勇","id":"446d02ad-9c5d-4bcd-ad4b-941a02d320bf","originalAuthorName":"李敬勇"},{"authorName":"周小平","id":"b2b5379d-b58b-4da1-90dc-d1ad650a88fc","originalAuthorName":"周小平"},{"authorName":"董春林","id":"a1854874-7043-4357-a623-a405c22fb002","originalAuthorName":"董春林"},{"authorName":"董继红","id":"8d6fab3a-ca74-4628-9b83-577415c8fb99","originalAuthorName":"董继红"}],"doi":"10.3969/j.issn.1005-5053.2013.5.006","fpage":"36","id":"a804948c-c964-4a74-af34-b97b6a58c814","issue":"5","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"de81f9a7-83a1-431c-98af-01cede68a932","keyword":"双轴肩搅拌摩擦","originalKeyword":"双轴肩搅拌摩擦焊"},{"id":"c8c8790a-27db-47a5-b83a-72bbc6b6d40e","keyword":"温度场","originalKeyword":"温度场"},{"id":"f8c66dbb-87d1-461d-ab4b-2e1b2e0df148","keyword":"6082铝合金","originalKeyword":"6082铝合金"}],"language":"zh","publisherId":"hkclxb201305006","title":"6082铝合金双轴肩搅拌摩擦试板温度场研究","volume":"33","year":"2013"},{"abstractinfo":"采用有限单元法,模拟连续油管钢带斜及形变热处理过程中温度场和残余应力场的分布情况.结果表明:在焊接过程中焊缝附近温度梯度很大,远离焊缝的地方温度梯度渐渐趋于平缓;随着焊接热源的移动,温度中心也随之移动,最高温度可达母材的熔点,能量集中在很小的范围内,造成高度集中的瞬时热输入.后残余应力主要集中在焊缝附近,最大应力值为432 MPa;形变热处理之后残余应力集中分布在热处理区域的边界,最大应力值为431 MPa.对比发现形变热处理并不能减小或消除焊接残余应力,只能使残余应力重新分配,远离焊缝附近,使该位置的材料趋于安全.","authors":[{"authorName":"王文武","id":"1b334428-2bad-482f-9c8b-72a4887742ab","originalAuthorName":"王文武"},{"authorName":"李继红","id":"df4b3e91-a0f7-40b0-873c-ddaeb0c11b16","originalAuthorName":"李继红"},{"authorName":"赵鹏康","id":"2357d083-021e-41bc-8878-d22440fd6a4f","originalAuthorName":"赵鹏康"},{"authorName":"张敏","id":"223a5037-7a91-4135-a24e-d93cdf1935e7","originalAuthorName":"张敏"}],"doi":"10.3969/j.issn.1004-244X.2011.01.019","fpage":"67","id":"54b466f7-11a3-4220-a446-9592a52714e0","issue":"1","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"bb24d258-ebe8-4e28-829a-1723e12233e3","keyword":"连续油管","originalKeyword":"连续油管"},{"id":"5f1843b8-3637-4ce4-8044-de89349b1fcf","keyword":"形变热处理","originalKeyword":"形变热处理"},{"id":"af61d4d3-5ff7-4738-ac74-9620422e2a5b","keyword":"有限元","originalKeyword":"有限元"},{"id":"7c45894e-3c70-41ba-948b-749d7a721230","keyword":"温度场","originalKeyword":"温度场"},{"id":"d9b77c47-0b1a-499a-ad97-74cb283b12f2","keyword":"残余应力场","originalKeyword":"残余应力场"}],"language":"zh","publisherId":"bqclkxygc201101019","title":"连续油管钢带斜温度场及残余应力场数值模拟","volume":"34","year":"2011"}],"totalpage":6697,"totalrecord":66969}