{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用电化学方法用金属铌直接合成了乙醇铌,用拉曼光谱,红外光谱和元素分析对产品进行了表征.结果表明:乙醇含水量对槽电压及阳极的溶解行为有显著的影响:随着含水量的增加,恒流电解所需的起始电压迅速增大,且电解过程中槽电压升高的速度和幅度越大.在经除水处理的乙醇中,铌阳极呈现层片状的均匀腐蚀,这种特征不随槽电压和电解时间的变化而改变:在未经除水的乙醇中,槽电压低时,阳极呈现点蚀的特点,槽电压高时,阳极腐蚀呈现均匀腐蚀.研究表明:电化学合成乙醇铌的关键是要设法除去乙醇中少量的水分.","authors":[{"authorName":"陈艺锋","id":"9ee95a70-e119-44cd-9dba-7c799be91f8e","originalAuthorName":"陈艺锋"},{"authorName":"王宇菲","id":"997ebef5-58b4-40e2-99c5-0b8d12e58ee9","originalAuthorName":"王宇菲"},{"authorName":"符金开","id":"2d382da4-af29-4e78-ae1b-26f4db5c4896","originalAuthorName":"符金开"},{"authorName":"夏志美","id":"2e7d0f86-a4ec-465b-adb9-c0b2b7abc0f8","originalAuthorName":"夏志美"},{"authorName":"卓海宇","id":"44007e3c-41bf-43b2-8a4a-2c84fc480313","originalAuthorName":"卓海宇"}],"doi":"","fpage":"117","id":"61a8a6a8-f06d-4b90-abcf-683a061f31fb","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"762aac6d-5662-48ec-a7fd-be05e96ea116","keyword":"乙醇铌","originalKeyword":"乙醇铌"},{"id":"631924e0-de9c-4996-ba0c-fc49cc079a1c","keyword":"电化学合成","originalKeyword":"电化学合成"},{"id":"e0f81157-d079-4016-8cd9-192cb113227b","keyword":"水分","originalKeyword":"水分"},{"id":"d4443588-e82f-43de-8c90-19b8e1bc776f","keyword":"阳极腐蚀","originalKeyword":"阳极腐蚀"}],"language":"zh","publisherId":"xyjsclygc2009z1026","title":"电化学直接合成已醇铌研究","volume":"38","year":"2009"},{"abstractinfo":"介绍了电化学法制备微米多孔铁箔的工艺.先以纯钛片为基体,采用电沉积法制得纯铁箔,电解液组成和工艺条件为:FeCl2·4H2O 300~400 g/L,aCl2 111 g/L,H3BO3 15 g/L,LaCl3·4H2O 37 g/L,pH0.1~0.4,电流密度50 A/dm2,温度95~105℃,时间5 min.再以纯铁箔作阳极,纯钛片作阴极,在相同的电解液中对纯铁箔进行阳极腐蚀,从而获得多孔铁箔.研究了阳极腐蚀时间、电流密度及温度对多孔铁箔表面形貌的影响.阳极腐蚀的最优工艺条件为:电流密度25 A/dm2,温度85℃,时间2.5 min.最佳工艺下可制得孔径为1~ 10μm、孔密度高于10 000个/cm2的微米多孔铁箔.","authors":[{"authorName":"杨伟","id":"66862535-7086-4d6e-b452-1668ed3f0cde","originalAuthorName":"杨伟"},{"authorName":"苏长伟","id":"fc22fa27-3d22-47a0-aec5-97bf70e13eb2","originalAuthorName":"苏长伟"},{"authorName":"郭俊明","id":"0df05c4d-0e1c-41ed-92ea-b9ca52b84814","originalAuthorName":"郭俊明"},{"authorName":"张英杰","id":"497bf775-ef7d-4c53-a636-11d87ca1b7a5","originalAuthorName":"张英杰"}],"doi":"","fpage":"1","id":"83c372ca-6f97-4451-91f8-dd492690dda9","issue":"1","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"da7225a2-de1f-46d1-b382-7d3665458cec","keyword":"多孔铁箔","originalKeyword":"多孔铁箔"},{"id":"b9f1e9ef-36e7-45e1-bfb4-e30005b0bae4","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"152bf926-3c5a-4894-95fa-7a6adad04138","keyword":"阳极腐蚀","originalKeyword":"阳极腐蚀"},{"id":"6a45dad5-56c4-4d7c-a616-056a7e49e0c7","keyword":"表面形貌","originalKeyword":"表面形貌"}],"language":"zh","publisherId":"ddyts201301001","title":"电化学制备微米多孔铁箔","volume":"32","year":"2013"},{"abstractinfo":"目前,对7075铝合金阳极氧化膜腐蚀行为的研究还不系统.对7075铝合金进行硫酸直流阳极氧化,采用铜加速乙酸盐雾腐蚀试验研究了7075铝合金氧化前后的腐蚀动力学规律,利用扫描电镜(SEM)、能谱(EDS)和电化学极化曲线法分析了氧化膜的腐蚀行为.极化曲线分析表明:延长腐蚀时间,7075铝合金表面的腐蚀产物会阻碍腐蚀的进行,使腐蚀速率逐渐减小;而阳极氧化试样整体耐蚀性较好,腐蚀较慢.从最大腐蚀深度分析结果可以看出,铝合金原样的最大腐蚀坑整体上要比阳极氧化样的深,腐蚀时间超过7d后原样腐蚀坑深约为阳极氧化样的1.4倍.","authors":[{"authorName":"刘静","id":"37204397-3385-4c86-a6f3-9f43591a5c73","originalAuthorName":"刘静"},{"authorName":"张鹏","id":"19e5c875-1400-42c6-aa0e-d6c171146d65","originalAuthorName":"张鹏"}],"doi":"","fpage":"56","id":"b688dc5e-476c-410c-90e4-79e4f51d6e60","issue":"8","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"b7cc2caf-df48-40f5-8fea-59b195c3e5dd","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"f40308de-0ef2-4c96-841c-95f6b511a482","keyword":"7075铝合金","originalKeyword":"7075铝合金"},{"id":"5bfc7c54-e95b-441d-bb0c-53818384250b","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"f44d9013-0abf-4511-983b-a08edd84796c","keyword":"铜加速乙酸盐雾腐蚀","originalKeyword":"铜加速乙酸盐雾腐蚀"}],"language":"zh","publisherId":"clbh201308018","title":"7075铝合金阳极氧化膜的腐蚀行为","volume":"46","year":"2013"},{"abstractinfo":"采用静态失重法、动电位扫描法和交流阻抗法研究了高纯镁和AZ31合金在3.5%NaCl溶液中的腐蚀行为.结果表明:高纯镁在3.5%的NaCl溶液中的平均腐蚀速率要小于AZ31合金,腐蚀后在高纯镁表面形成了一层氧化膜,阻碍进一步腐蚀,而由于第二相与基体发生电化学反应的AZ31合金腐蚀过程继续维持.用SEM观察两者的腐蚀形貌发现,AZ31合金整个表面都被剧烈的腐蚀;而高纯镁表面腐蚀均匀,且腐蚀程度较浅.","authors":[{"authorName":"巢国辉","id":"0c12cc79-5788-4306-8fda-dd1181e6a0ab","originalAuthorName":"巢国辉"},{"authorName":"黎文献","id":"5f8886aa-1b67-4d73-bd1b-434be1f89eab","originalAuthorName":"黎文献"},{"authorName":"余琨","id":"41594d13-8ca8-4e9d-a900-dba96cfe3dbd","originalAuthorName":"余琨"},{"authorName":"丁荣辉","id":"01dbf35d-3b0a-430b-bb99-58572ef28e42","originalAuthorName":"丁荣辉"}],"doi":"10.3969/j.issn.1002-6495.2006.02.006","fpage":"98","id":"ccd3ba11-1b64-4956-8dd6-e4b69b37c9b9","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"fb86fcc6-b875-4eef-aa8b-8e70a1e296e8","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"8048f4b3-e3ea-4039-8ed6-1211e0fd6a27","keyword":"牺牲阳极","originalKeyword":"牺牲阳极"},{"id":"8b15eb45-4b11-4aa9-87cc-26013553b89c","keyword":"失重法","originalKeyword":"失重法"},{"id":"39f8386f-11f8-4022-b3b9-c60872f72cbc","keyword":"交流阻抗","originalKeyword":"交流阻抗"}],"language":"zh","publisherId":"fskxyfhjs200602006","title":"镁基牺牲阳极腐蚀行为研究","volume":"18","year":"2006"},{"abstractinfo":"对比研究了新型稀土铅钙合金与传统合金的力学性能;利用恒流腐蚀研究了两种合金在4.5 mol/L硫酸溶液中的耐腐蚀性能,并用XPS对合金在阳极0.9 V下腐蚀4 h所形成腐蚀膜的结构进行了分析.结果表明:新型铅钙合金的综合性能优于传统板栅合金,稀土的加入抑制了腐蚀膜中导电性差的二价铅生长,增强膜的导电性,同时提高膜的力学性能,有利于电池深循环性能的提高和板栅与活性物质之间的结合.","authors":[{"authorName":"李党国","id":"044c9896-ce27-4973-b7f1-3ce0837456e8","originalAuthorName":"李党国"},{"authorName":"周根树","id":"d0cb9150-98a6-405b-8a95-914aad65becb","originalAuthorName":"周根树"},{"authorName":"姚靓","id":"6a7dddca-2943-4b18-b3f2-a53f1447c683","originalAuthorName":"姚靓"},{"authorName":"郑茂盛","id":"3331d459-4061-4bc9-b03e-36143dc63da2","originalAuthorName":"郑茂盛"}],"doi":"10.3969/j.issn.1002-6495.2006.02.005","fpage":"95","id":"892c9749-77e1-4753-b0d9-d98fa4415fa3","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"5a810437-b4e2-4ddd-9cea-402523c6cf7b","keyword":"稀土铅钙合金","originalKeyword":"稀土铅钙合金"},{"id":"5026a208-4948-44a5-a854-bcc3e356cad8","keyword":"耐腐蚀性能","originalKeyword":"耐腐蚀性能"},{"id":"c15139be-9d2d-4836-b8d8-cc43f4b4396b","keyword":"XPS","originalKeyword":"XPS"},{"id":"b13fbf55-110b-409f-8412-09fdc481c6e3","keyword":"深循环性能","originalKeyword":"深循环性能"}],"language":"zh","publisherId":"fskxyfhjs200602005","title":"稀土铅钙合金及其阳极腐蚀膜性能研究","volume":"18","year":"2006"},{"abstractinfo":"电积锌工业中,目前广泛使用Pb-(0.8~ 1.0) %Ag合金作为阳极,其优势地位尚无法完全被取代,Al,Ca,Sr,RE等元素能较好地提升铅银合金的综合性能,并且能弥补银的损失.分别在ZnSO4-H2SO4和ZnSO4-MnSO4-H2 SO4体系中研究了Pb-0.15%Ag,Pb-0.15%Ag-0.11%Al,Pb-1.00%Ag,Pb-0.30%Ag-0.06 %Ca-0.05%Ce的阳极腐蚀速率以及后3种阳极在ZnSO4-H2 SO4体系极化48 h阳极氧化膜的形貌和组成.结果表明:在以上2种体系中Pb-0.15%Ag-0.11%Al的耐蚀性均要好于Pb-0.15%Ag,但较Pb-1.00%Ag,Pb-0.30%Ag-0.06 %Ca-0.05%Ce合金的差.","authors":[{"authorName":"张杰磊","id":"63b01ebd-46aa-41f3-8a36-de76f6e532e5","originalAuthorName":"张杰磊"},{"authorName":"陈步明","id":"38152bb3-3138-4c2e-9bf2-c54531724e51","originalAuthorName":"陈步明"},{"authorName":"郭忠诚","id":"551d226c-21e4-42b5-a889-3feea54b2465","originalAuthorName":"郭忠诚"},{"authorName":"徐瑞东","id":"b36b65b3-9934-4200-8d19-4be2a2facec8","originalAuthorName":"徐瑞东"}],"doi":"","fpage":"32","id":"669343a9-b6f1-4890-b28d-17017aafd373","issue":"1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"ca64902d-0806-4d4b-b8f7-e94b73e09635","keyword":"铅基合金","originalKeyword":"铅基合金"},{"id":"901f7b7d-1745-4676-99f4-316892bf0d44","keyword":"阳极","originalKeyword":"阳极"},{"id":"68a2c245-d39c-4cc6-bb1c-d9cc89439831","keyword":"锌电积","originalKeyword":"锌电积"},{"id":"6d41c869-6aec-4238-9884-9ce3d99b5cf3","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"}],"language":"zh","publisherId":"clbh201601008","title":"铅基合金阳极腐蚀行为","volume":"49","year":"2016"},{"abstractinfo":"介绍了3类常用的牺牲阳极材料,重点阐述了阳极材料中的杂质元素及合金元素对阳极性能的影响。","authors":[{"authorName":"齐公台","id":"f201e7aa-742c-4c16-8c45-0bded00d8c01","originalAuthorName":"齐公台"},{"authorName":"郭稚弧","id":"d64c48f7-1dc0-4d77-9be8-f43cd1bf501e","originalAuthorName":"郭稚弧"},{"authorName":"林汉同","id":"f9133760-3089-433c-96f1-922500eddd09","originalAuthorName":"林汉同"},{"authorName":"魏伯康","id":"97e88475-a458-4c57-9894-33c462a6188a","originalAuthorName":"魏伯康"}],"doi":"10.3969/j.issn.1003-1545.2001.01.010","fpage":"36","id":"dc916fe4-930a-4234-860e-3cd17acf7df4","issue":"1","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"2021061f-4bae-411e-a2fe-9a25319d11b2","keyword":"牺牲阳极锌合金铝合金镁合金","originalKeyword":"牺牲阳极锌合金铝合金镁合金"}],"language":"zh","publisherId":"clkfyyy200101010","title":"腐蚀保护常用的几种牺牲阳极材料","volume":"16","year":"2001"},{"abstractinfo":"综述了近年来国内外铝电解用NiFe2O4基金属陶瓷惰性阳极阳极组元的溶解与分布、腐蚀率的预测与测定以及氧化物和金属相对阳极腐蚀的影响三个方面所做的研究工作.","authors":[{"authorName":"何汉兵","id":"9607d952-0884-4e53-b054-6a1e4cba00ff","originalAuthorName":"何汉兵"},{"authorName":"周科朝","id":"5edd6193-a054-4aa9-a56d-6f3573175829","originalAuthorName":"周科朝"},{"authorName":"李志友","id":"c1a9e588-9e1f-4bd5-a90b-7d7eb275c258","originalAuthorName":"李志友"}],"doi":"","fpage":"359","id":"1dedc1d1-7512-4d09-8297-e52bbd9dc7eb","issue":"7","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"e56a796f-c224-4acb-be79-bfac2724da17","keyword":"NiFe2O4","originalKeyword":"NiFe2O4"},{"id":"1b70a047-375d-4f84-90ce-9bfa8d1bae05","keyword":"铝电解","originalKeyword":"铝电解"},{"id":"56f0b8a8-7c56-4a1f-b2b2-f0478b0ffe14","keyword":"惰性阳极","originalKeyword":"惰性阳极"},{"id":"650a7d89-2512-478d-a460-b9151f84362b","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"00034eaa-e59b-4c26-b73f-429c9bf1bea2","keyword":"金属陶瓷","originalKeyword":"金属陶瓷"}],"language":"zh","publisherId":"fsyfh200807001","title":"NiFe2O4基金属陶瓷惰性阳极腐蚀研究进展","volume":"29","year":"2008"},{"abstractinfo":"采用电化学阻抗谱技术、失重法和扫描电镜分析技术(SEM)研究Al-Zn-In-Mg-Ga-Mn牺牲阳极在自腐蚀与7A52铝合金偶接两种条件下的溶解行为和活化性能。结果表明:偶连接的Al-Zn-In-Mg-Ga-Mn牺牲阳极有效地降低了7A52Al的腐蚀速率,牺牲阳极一直存在活性溶解,腐蚀均匀,腐蚀产物易脱落。自腐蚀的Al-Zn-In-Mg-Ga-Mn牺牲阳极发生局部腐蚀,表面溶解不均匀;表面腐蚀产物和氧化膜以及活性溶解点的减少阻滞了牺牲阳极溶解反应。","authors":[{"authorName":"黄燕滨","id":"0a099b9d-42a9-405d-9849-4c5e7b1473a8","originalAuthorName":"黄燕滨"},{"authorName":"宋高伟","id":"e55ebb9c-6b46-4de3-8e13-bbcb317d3e69","originalAuthorName":"宋高伟"},{"authorName":"刘学斌","id":"a7a5ae97-b5bd-4b1d-82b4-be5e8d13b4b4","originalAuthorName":"刘学斌"},{"authorName":"丁华东","id":"2190e70b-437d-4b5a-bfbc-82f94a93910b","originalAuthorName":"丁华东"},{"authorName":"闫永贵","id":"de034ac3-6fbb-4199-b5d2-276a60569998","originalAuthorName":"闫永贵"},{"authorName":"邵新海","id":"05f8bbf0-b1a3-4948-8486-811b99e51448","originalAuthorName":"邵新海"}],"categoryName":"|","doi":"","fpage":"44","id":"2c7e36e6-80cc-493f-a5c2-04640245ce4c","issue":"1","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"98e81943-bfb6-4322-9372-622700449e2a","keyword":"铝基牺牲阳极","originalKeyword":"铝基牺牲阳极"},{"id":"1548afc9-6893-4661-b2fb-2570ab6d4d6c","keyword":"marine corrosion protection","originalKeyword":"marine corrosion protection"},{"id":"dff94dff-51f6-4b0f-8a12-34deb4041692","keyword":"electrochemical impedance","originalKeyword":"electrochemical impedance"},{"id":"4ba0bc91-c294-46fc-9757-f841001f1edd","keyword":"corrosion","originalKeyword":"corrosion"}],"language":"zh","publisherId":"1005-4537_2012_1_1","title":"Al-Zn-In-Mg-Ga-Mn牺牲阳极腐蚀防护行为研究","volume":"32","year":"2012"},{"abstractinfo":"目前,国内外还鲜见有关金属钛阳极氧化膜半导体特性与腐蚀行为的报道。采用极化曲线、交流阻抗和Mott-Schottky曲线研究了TA2硫酸和磷酸阳极氧化膜的腐蚀性能和半导体特性。结果表明:在1%NaCl溶液中,钛阳极氧化膜的自腐蚀电位升高,自腐蚀电流密度降低,耐蚀性能提高;氧化电压对氧化膜的厚度有较大影响;磷酸阳极氧化膜在低频区阻抗更大;2种阳极氧化膜都是n型半导体,磷酸阳极氧化膜的载流子密度较小,平带电位更负。","authors":[{"authorName":"钱备","id":"49063573-aeba-4c7e-95a1-660eeb39d030","originalAuthorName":"钱备"},{"authorName":"李淑英","id":"983e72dd-4fcd-4499-a3a7-2b72f4223aa7","originalAuthorName":"李淑英"},{"authorName":"范洪强","id":"53f3e7e6-4e0d-4bd8-a674-dbf48a46c063","originalAuthorName":"范洪强"},{"authorName":"余相仁","id":"192bede9-ccca-4384-a30b-75bdff8c3eea","originalAuthorName":"余相仁"},{"authorName":"张琳","id":"2626c743-3896-41ec-8732-ef9d668bdeec","originalAuthorName":"张琳"}],"doi":"","fpage":"8","id":"8735dfa9-a13a-449a-a88e-a9cac31becad","issue":"10","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"4b37410c-3237-429b-a6ef-883f559428d4","keyword":"阳极氧化膜","originalKeyword":"阳极氧化膜"},{"id":"35ba69d8-ede7-4389-b744-fe26bcf6e196","keyword":"钛材","originalKeyword":"钛材"},{"id":"c5a32ccf-4daa-4c03-9090-9bdf296a4602","keyword":"半导体特性","originalKeyword":"半导体特性"},{"id":"609e6a4c-c054-4be0-8d64-64ecfc18e916","keyword":"腐蚀性能","originalKeyword":"腐蚀性能"}],"language":"zh","publisherId":"clbh201110004","title":"钛阳极氧化膜的半导体特性及腐蚀行为","volume":"44","year":"2011"}],"totalpage":2023,"totalrecord":20224}