陈文
,
麦立强
,
徐庆
,
彭俊锋
,
朱泉峣
,
余华
无机材料学报
以V2O5和十六胺为原料在水热条件下合成了氧化钒纳米管, 采用XRD、SEM、TEM、FTIR、ESR等手段分析研究了氧化钒纳米管的形成机理. 结果表明, 氧化钒纳米管的形成主要基于“卷曲机理”, 其形成过程包括: 表面活性剂分子嵌入到钒氧化物层间, 形成新层状化合物前驱体; 水热驱动下层状化合物边缘松动, 并开始卷曲, 降低体系能量; 合适的水热反应时间下最终形成钒氧化物纳米管. 模板剂嵌入到钒氧化物层间形成一定大小的层间距以及V4+的存在对从层状化合物卷曲成纳米管起到了积极的作用.
关键词:
氧化钒
,
nanotubes
,
self-assembly
,
mechanism of formation
陈文
,
麦立强
,
徐庆
,
彭俊锋
,
朱泉峣
,
余华
无机材料学报
doi:10.3321/j.issn:1000-324X.2005.01.010
以V2O5和十六胺为原料在水热条件下合成了氧化钒纳米管,采用XRD、SEM、TEM、FTIR、ESR等手段分析研究了氧化钒纳米管的形成机理.结果表明,氧化钒纳米管的形成主要基于"卷曲机理",其形成过程包括:表面活性剂分子嵌入到钒氧化物层间,形成新层状化合物前驱体;水热驱动下层状化合物边缘松动,并开始卷曲,降低体系能量;合适的水热反应时间下最终形成钒氧化物纳米管.模板剂嵌入到钒氧化物层间形成一定大小的层间距以及V4+的存在对从层状化合物卷曲成纳米管起到了积极的作用.
关键词:
氧化钒
,
纳米管
,
自组装
,
形成机理
孙宇梁
,
王永生
,
田玉林
,
王均英
,
黄文学
原子核物理评论
doi:10.11804/NuclPhysRev.32.03.341
彭宁阱是用于直接测量原子核质量的精确设备.为了保证彭宁阱的测量精度,需在阱中心产生精准的四极静电场,而四极静电场是通过对彭宁阱的核心电极施加合适的电压产生的.采用公式推导法和最小二乘法两种方法计算得到了LPT核心电极需加电压幅值.对于公式推导法,电压值完全从理论出发,经公式推导后计算得到;最小二乘法的出发点是使取样偏差的平方和最小,且通过仿真模拟考虑了电极的实际几何形状.由这两种方法得到的非四极项系数C4和C6,可用于估算因偏离理想四极电场所产生的实验误差.虽然这两种方法的出发点不同,但都可以在阱中心产生需要的四极电场.
关键词:
彭宁阱
,
质量测量
,
四极电场
,
电极电压
刘洋
,
李鹏南
,
陈明
,
邱新义
,
胡立湘
宇航材料工艺
doi:10.3969/j.issn.1007-2330.2015.06.012
采用双锋角钻头和普通麻花钻对T700碳纤维复合材料(CFRP)进行钻削试验,从钻削轴向力、制孔出口质量和表面粗糙度等方面分析双锋角钻头在不同加工参数下制孔特点,并与普通麻花钻进行对比.试验结果表明:与普通麻花钻对比,双锋角钻头钻削CFRP时钻削轴向力减小约20%,制孔出口质量更好,孔壁的表面粗糙度值减小,体现优异的切削性能更适合CFRP的制孔加工.
关键词:
双锋角钻头
,
CFRP
,
钻削轴向力
,
出口质量
,
孔壁表面粗糙度
刘洋
,
李鹏南
,
陈明
,
邱新义
,
唐玲艳
宇航材料工艺
doi:10.3969/j.issn.1007-2330.2016.05.010
针对碳纤维复合材料钻孔时易产生撕裂、毛刺等缺陷的特点,采用双锋角钻头为研究对象,从横刃、第一主切削刃和第二主切削刃对孔入、出口缺陷的影响和加工参数对撕裂因子的影响规律等方面分析双锋角钻头钻孔特点,并与普通麻花钻进行对比.结果表明:在相同的加工参数下,双锋角钻头双主切削刃加工特点降低了入、出口钻削轴向力,有效抑制了入、出口撕裂、毛刺等缺陷产生,更适合于钻削碳纤维复合材料.主轴转速增大有利于减小撕裂因子,随着进给速度的增加撕裂因子呈增大的趋势.采用多元线性回归方法建立了试验两种钻头钻孔入、出口的撕裂因子与加工参数之间的回归预测模型.
关键词:
双锋角钻头
,
碳纤维复合材料
,
撕裂
,
加工参数
孟圆圆
,
公维光
,
郑柏存
,
孟鑫
高分子材料科学与工程
以膨胀型阻燃剂(IFR)和自制的有机蒙脱土(OMMT)协同阻燃荆对线型低密度聚乙烯(LLDPE)进行阻燃改性,研究了阻燃剂和协同阻燃剂对LLDPE燃烧性能、力学性能的影响。运用极限氧指数(LOI)和热重分析(TGA)表征了LLDPE的阻燃性能,通过扫描电子显微镜(SEM)观察燃烧残余物的炭层形貌。结果表明,0MMT的加入增强了LLDPE/IFR体系的阻燃性能和力学性能,且在一定程度上解决了体系燃烧时的熔滴和浓烟现象;当IFR用量为30份,有机蒙脱土用量为2%时,体系的极限氧指数达到25.2%,燃烧残余物形成致密的炭层。
关键词:
线型低密度聚乙烯
,
膨胀型阻燃剂
,
有机蒙脱土
,
协同阻燃