{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"回顾了压电聚合物的历史,探讨了不同结构形态聚合物的压电机理,详细综述了脂肪族聚酰胺压电性能的研究历史和现状,讨论了芳香族聚酰胺及聚酰胺复合薄膜的压电性,最后进一步指出了聚酰胺压电性能的研究方向.","authors":[{"authorName":"刘少兵","id":"585f0644-a939-4da8-a66c-68257cdb1aba","originalAuthorName":"刘少兵"},{"authorName":"李召鹏","id":"cd14a3b6-479c-4c01-b0b2-d8a25d055e34","originalAuthorName":"李召鹏"},{"authorName":"吕振亚","id":"3e9e0311-b558-4d5a-9e8b-0facf8c6ba0b","originalAuthorName":"吕振亚"},{"authorName":"付鹏","id":"0b8b05cc-c881-4d34-9df2-74b53b8299f0","originalAuthorName":"付鹏"},{"authorName":"刘民英","id":"39518c9b-7feb-41cc-a7d3-2ee407b5eb28","originalAuthorName":"刘民英"},{"authorName":"赵清香","id":"c6451aaa-c858-4bc7-b4a7-da034cb77545","originalAuthorName":"赵清香"}],"doi":"","fpage":"85","id":"16286c3a-701f-494a-a5c4-1a99121eb3b6","issue":"13","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"cda21d19-076a-493e-920d-a539bad96181","keyword":"压电性","originalKeyword":"压电性"},{"id":"df5aae78-748a-407f-807c-fa2ecfbdda9e","keyword":"铁电性","originalKeyword":"铁电性"},{"id":"b05d2ca8-622a-4394-afc5-c557407b2032","keyword":"聚酰胺","originalKeyword":"聚酰胺"}],"language":"zh","publisherId":"cldb201213017","title":"聚酰胺压电性研究进展","volume":"26","year":"2012"},{"abstractinfo":"经压力膨化处理后,以正逆压电系数d33测量研究了一种经无栅电晕充电的国产商用聚丙烯蜂窝膜(cellular PP,商品名PQ50)驻极体的压电性.经过优化工艺参数压力膨化处理后的PQ50蜂窝膜呈现600pC/N以上的准静态压电系数,这一量值约为PVDF相关系数的40倍.而通过将单层PQ50蜂窝膜驻极体粘贴形成合理的多层结构,得到的复合膜系压电系数d33高达2010pC/N,约为PZT压电陶瓷相应系数的3倍.从而为拓宽这类新一代的非极性孔洞聚合物压电功能膜应用领域,推动其应用进程提供了一定的理论和技术依据.","authors":[{"authorName":"邱勋林","id":"8f104c6b-aeb1-4129-bfb0-0bfd0753e81d","originalAuthorName":"邱勋林"},{"authorName":"夏钟福","id":"388e175c-ac44-4fa0-9fd4-5dc2d9f23bd5","originalAuthorName":"夏钟福"},{"authorName":"王飞鹏","id":"544bcb83-cac7-4916-996f-ce4591dec928","originalAuthorName":"王飞鹏"}],"doi":"","fpage":"207","id":"a89587c7-6938-4f20-8c03-6cbcb05465e3","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3781fd39-8f47-46b0-9778-b72c7f81ec07","keyword":"PP蜂窝膜","originalKeyword":"PP蜂窝膜"},{"id":"20d09da0-12a3-4095-9af5-c5e051da6211","keyword":"压电性","originalKeyword":"压电性"},{"id":"abab6ce9-da17-490d-8e8e-5725a92ed1e3","keyword":"压力膨化技术","originalKeyword":"压力膨化技术"},{"id":"30d4b003-40a7-43bb-8c18-1cb9f1189c20","keyword":"复合膜系","originalKeyword":"复合膜系"}],"language":"zh","publisherId":"gncl200602012","title":"单层及多层PP蜂窝膜驻极体的压电性","volume":"37","year":"2006"},{"abstractinfo":"为了提高孔洞结构聚丙烯(cellular PP)铁电驻极体的压电性能,采用高压气体膨化技术对材料进行了改性处理,并利用准静态和干涉仪测量方法,对经处理的cellular PP铁电驻极体薄膜的压电效应进行了研究.结果表明:气体膨化工艺能够明显提高cellular PP铁电驻极体薄膜的压电活性;这种突出的压电活性源于膨化膜杨氏模量Y的降低和电极化能力的提高;压电系数d33随频率的增加呈现下降趋势:从0.01Hz下的1200 pC/N降低到共振频率附近的350 pC/N;对于不同参数处理的样品,它们的共振频率在150~400 kHz;大多数样品的d33在0.2~10 kPa的范围内没有明显的变化,但是高于10 kPa,d33随之下降;cellu-lar PP铁电驻极体薄膜d33的热稳定性与非孔洞型PP驻极体薄膜的电荷储存热稳定性相当.","authors":[{"authorName":"张晓青","id":"5842e321-5ebf-4f17-977a-5e584153e38a","originalAuthorName":"张晓青"}],"doi":"10.3969/j.issn.1005-0299.2008.04.007","fpage":"471","id":"351deb3c-fb00-4f78-aa60-d3dee38daf92","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"74431106-aa13-464c-8d93-84e5da601a46","keyword":"铁电驻极体","originalKeyword":"铁电驻极体"},{"id":"27572ba5-e01a-47af-ad59-d51c2fc1c01e","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"9389bb78-5c32-4cf9-a0fa-9da8b0f3f00f","keyword":"孔洞结构","originalKeyword":"孔洞结构"},{"id":"568974ca-3f2b-4dcf-aef1-b49231109195","keyword":"压电性","originalKeyword":"压电性"},{"id":"8cd9e3f9-4a69-438b-b0c2-6a23bf7668e2","keyword":"膨化处理","originalKeyword":"膨化处理"}],"language":"zh","publisherId":"clkxygy200804007","title":"孔洞结构聚丙烯铁电驻极体薄膜的压电性研究","volume":"16","year":"2008"},{"abstractinfo":"以压力膨化技术处理改性商用SHD50型聚丙烯蜂窝膜(PP Cellular),它们的压电d33系数可达193pC/N,比未经处理的样品提高了约2个数量级.利用点电晕充电,接触法充电和动态压电d33系数测量研究了上述2种不同充电方法对SHD50膜压电性的影响.","authors":[{"authorName":"邱勋林","id":"558928b6-5885-4f77-9214-b7d6e3d973be","originalAuthorName":"邱勋林"},{"authorName":"夏钟福","id":"f7d77a94-55d4-4c06-a50f-d391cba902a9","originalAuthorName":"夏钟福"},{"authorName":"张鹏锋","id":"51b335e7-8d95-4ba9-96bf-2d9a6eb1ced0","originalAuthorName":"张鹏锋"}],"doi":"","fpage":"402","id":"e3bfcd53-4fc5-4884-8682-bdf8a7e04ddf","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c8ac0604-1d38-4809-b2bd-913f23ab0db3","keyword":"聚丙烯蜂窝膜","originalKeyword":"聚丙烯蜂窝膜"},{"id":"1d0322b8-0341-46cb-9615-c0fad10d4a24","keyword":"压力膨化技术","originalKeyword":"压力膨化技术"},{"id":"d4f342af-15dd-4018-809e-fd00289af48b","keyword":"压电性","originalKeyword":"压电性"}],"language":"zh","publisherId":"gncl200503026","title":"压力膨化处理和充电方法对PP蜂窝膜压电性的影响","volume":"36","year":"2005"},{"abstractinfo":"利用准静态法和激光干涉法测量正、逆压电d33系数,研究了经压力膨化处理的聚丙烯孔洞型铁电驻极体薄膜压电系数的压强和频率特性及其热稳定性.结果表明,聚丙烯薄膜经压力膨化处理后,其压电性能改善的原因是:压力膨化处理既能有效地降低孔洞膜的弹性模量Y,又能增强其储电能力.聚丙烯孔洞膜的压电d33系数在激励信号压强为0.2~4kPa的范围内基本保持恒定,但当其值高于4kPa时,d33系数出现了明显的下降.聚丙烯孔洞膜的压电d33系数随频率上升而下降(即从0.001Hz时的1200pC/N降低到其机械共振频率附近时的350pC/N),是与材料的弹性模量Y随频率的上升而增加直接相关.对不同工艺参数制备的样品,其机械共振频率位于150~400kHz范围内.实验结果还表明:聚丙烯孔洞膜的压电d33系数的热稳定性与非孔洞型聚丙烯驻极体薄膜的电荷储存热稳定性相近.","authors":[{"authorName":"张晓青","id":"1a4126c5-fad9-4ea9-85b9-62419d15084a","originalAuthorName":"张晓青"},{"authorName":"王飞鹏","id":"8398e2b8-8406-46dd-b533-196423a272e5","originalAuthorName":"王飞鹏"},{"authorName":"黄金峰","id":"1bf49ab2-3f05-462e-93de-ceb978002b83","originalAuthorName":"黄金峰"},{"authorName":"夏钟福","id":"2769afa6-d5f0-4c41-8957-653b64e49d9b","originalAuthorName":"夏钟福"},{"authorName":"沈军","id":"96643b0d-f0b9-4d6f-8ef9-700db6e08c43","originalAuthorName":"沈军"},{"authorName":"周斌","id":"92b0930b-5b27-4fd7-b7ec-be728dc5ed15","originalAuthorName":"周斌"},{"authorName":"安振连","id":"b4d10e63-0c14-4c58-a397-49eb97412e40","originalAuthorName":"安振连"}],"doi":"","fpage":"1910","id":"8156a253-a395-4535-88cb-9343d040cbc3","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"965b9e72-569f-472b-a6ef-955de32c2fe2","keyword":"聚丙烯孔洞铁电驻极体","originalKeyword":"聚丙烯孔洞铁电驻极体"},{"id":"4a7ffcc6-4b01-4381-bad9-b94c1137d8d6","keyword":"压电性","originalKeyword":"压电性"},{"id":"17f15342-1c01-4b0c-ac80-71d81f731d98","keyword":"压力膨化处理","originalKeyword":"压力膨化处理"}],"language":"zh","publisherId":"gncl200612016","title":"聚丙烯孔洞型铁电驻极体薄膜的压电性研究","volume":"37","year":"2006"},{"abstractinfo":"报道了提高孔洞结构压电驻极体膜压电活性的新方法.该方法是在对已膨化处理的压电驻极体薄膜再进行一次膨化处理,通过调节薄膜的力学性能来进一步优化材料的压电活性.结果表明,将聚丙烯(PP)压电驻极体薄膜进行二次膨化处理后,其压电活性比一次膨化的:PP薄膜提高约40%.这是因为薄膜在真空蒸镀电极过程中导致的厚度减小能够通过二次膨化工艺得到恢复,而厚度的增加可以有效地降低材料的杨氏模量,从而使薄膜的压电系数d33增加;两次膨化温度对压电系数d33均有影响,并且相互联系;通过选择合理的一次和二次膨化工艺参数(例如100℃和45℃)能够获得稳定的高压电系数压电驻极体膜.","authors":[{"authorName":"张晓青","id":"7c5e70af-4cdd-4817-acc3-39bb4bd70e3b","originalAuthorName":"张晓青"},{"authorName":"黄金峰","id":"c8c4547e-3d7b-4a77-9b88-5252a0399c01","originalAuthorName":"黄金峰"},{"authorName":"王飞鹏","id":"69743a58-f7e6-42c4-b29c-e29852c17e02","originalAuthorName":"王飞鹏"},{"authorName":"夏钟福","id":"f284216a-abb2-4aa8-a080-b6d5b440de70","originalAuthorName":"夏钟福"}],"doi":"10.3969/j.issn.1007-4252.2007.06.006","fpage":"537","id":"0b0a98d1-f1ac-49dd-b8d6-77791afbc754","issue":"6","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"c0b625a1-06de-4fff-bc3a-44bf8b45e3ed","keyword":"二次膨化","originalKeyword":"二次膨化"},{"id":"a8dec001-510f-4797-b54d-8886ac3cd270","keyword":"孔洞结构聚合物","originalKeyword":"孔洞结构聚合物"},{"id":"e9775497-0ced-4659-90e6-ffb0347b13c4","keyword":"压电性","originalKeyword":"压电性"},{"id":"d5d7e000-eb39-4a41-a658-b46c6f37edbb","keyword":"驻极体","originalKeyword":"驻极体"}],"language":"zh","publisherId":"gnclyqjxb200706006","title":"经二次膨化工艺优化的孔洞结构聚丙烯薄膜的压电性","volume":"13","year":"2007"},{"abstractinfo":"研究了(Na0.8K0.2)0.5Bi0.5TiO3陶瓷的介电和压电性能,发现陶瓷从室温到500℃温度范围的介电谱中存在两个介电峰,电滞回线显示第一个介电峰由铁电-反铁电相变引起的,温度继续升高,反铁电相由宏畴变为微畴,微畴向顺电相转变导致了第二个介电峰,该峰对应的相变为弥散型相变.室温下陶瓷具有较高的剩余极化强度Pr=29.4μC/cm2和相对低的矫顽电场Ec=2.8kV/mm,极化后的陶瓷显示出较高的压电常数d33=120pC/N和机电耦合系数Kp=28.5%,以及高的频率常数Nφ=2916Hz.m,120℃具有最小的谐振频率温度系数.","authors":[{"authorName":"李月明","id":"471633f3-3f8e-45e5-86f7-9c808c090d86","originalAuthorName":"李月明"},{"authorName":"陈文","id":"52dfdf69-5d26-4e1d-bb2d-4faa1e8c7ed0","originalAuthorName":"陈文"},{"authorName":"徐庆","id":"cae72069-ae3f-4c02-abff-a39a774b1c96","originalAuthorName":"徐庆"},{"authorName":"周静","id":"b16f5271-10df-48b7-b337-4de449462bda","originalAuthorName":"周静"},{"authorName":"廖梅松","id":"d9e9a41f-638a-450f-99c8-dfaef07effea","originalAuthorName":"廖梅松"}],"doi":"10.3321/j.issn:1000-324X.2004.04.018","fpage":"817","id":"43756f39-8033-43ed-812f-807e055d4a9f","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"5b366adf-789c-4dff-a57b-9631e1f25ffa","keyword":"钛酸铋钠","originalKeyword":"钛酸铋钠"},{"id":"14e77bc5-d0cb-4ae9-83da-ac6dce9caa08","keyword":"介电性","originalKeyword":"介电性"},{"id":"ee97f42f-3a65-4498-902e-1b5213367a8a","keyword":"压电性","originalKeyword":"压电性"},{"id":"97d3a8b6-7f0a-4b3a-85a3-d5cebb6daa5e","keyword":"弛豫相变","originalKeyword":"弛豫相变"},{"id":"c7079297-4d45-477f-9f7c-afc3c295036b","keyword":"反铁电","originalKeyword":"反铁电"}],"language":"zh","publisherId":"wjclxb200404018","title":"(Na0.8K0.2)0.5Bi0.5TiO3陶瓷的介电压电性能","volume":"19","year":"2004"},{"abstractinfo":"将恒压电晕充电的多孔聚四氟乙烯(polytetrafluoroethylene,PTFE)驻极体置于不同强度的紫外线下,研究紫外线对多孔PTFE驻极体压电活性的影响,探讨多孔PTFE医疗产品采用紫外消毒的可能性.研究结果指出:(1)常温下,多孔PTFE驻极体的准静态压电系数d33随充电时间的延长而增加,并呈现出线性区、非线性区和饱和区三个区间,多孔PTFE驻极体的压电活性主要依赖于这类材料的电荷储存能力.(2)医用紫外线辐照对多孔PTFE的准静态压电系数d33的影响甚微.(3)多孔PTFE驻极体的d33随紫外辐照时环境湿度的提高而有下降,环境湿度越大,d33的下降越多.(4)紫外线辐照适合聚四氟乙烯医用驻极体产品的消毒.","authors":[{"authorName":"江键","id":"2e4b2d34-5b1e-4ebb-8e2a-0b0ecf51b1c3","originalAuthorName":"江键"},{"authorName":"宋茂海","id":"77d878d9-aaea-498b-a2d9-bf7bf781cb1a","originalAuthorName":"宋茂海"},{"authorName":"崔黎丽","id":"da554bd7-764e-4fc7-8b84-73bcef955161","originalAuthorName":"崔黎丽"},{"authorName":"王小平","id":"2c63edb8-cd41-4772-8683-f91479be7627","originalAuthorName":"王小平"}],"doi":"","fpage":"1481","id":"18e0d9ad-2449-460c-9172-538abe18905b","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a50604dd-518f-497a-994b-6e5eea2dc676","keyword":"多孔聚四氟乙烯","originalKeyword":"多孔聚四氟乙烯"},{"id":"11a7c5fa-32ac-47ac-a8ee-304bdeaa270c","keyword":"驻极体","originalKeyword":"驻极体"},{"id":"7a8704b8-55b6-41d4-a4bf-51f962df5fe9","keyword":"压电性","originalKeyword":"压电性"},{"id":"a690f1ae-78c0-4ef7-b949-cca22ca816a6","keyword":"紫外线","originalKeyword":"紫外线"}],"language":"zh","publisherId":"gncl2004z1416","title":"紫外线对多孔聚四氟乙烯驻极体压电性能的影响","volume":"35","year":"2004"},{"abstractinfo":"用二步合成法制备了(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3原料,并制成了纯钙钛矿结构压电陶瓷. 研究了三方-四方相界附近组份(x=0.25~0.40)及工艺与性能的关系. 结果表明,在x=0.32~0.35间材料具有较大的介电常数,压电常数,耦合系数以及较低的品质因数. 材料以1200C附近保温150min为佳. 材料性能表明,有希望成为新型压电陶瓷.","authors":[{"authorName":"陈辛尘","id":"58cd51e9-085c-402d-ba0a-2e144747c014","originalAuthorName":"陈辛尘"},{"authorName":"王评初","id":"50326e79-2269-4b1f-a727-e3c3c8ccd98c","originalAuthorName":"王评初"},{"authorName":"潘晓明","id":"29784428-6ed0-4afb-945b-c8f509d741bf","originalAuthorName":"潘晓明"},{"authorName":"瞿翠凤","id":"c24adb84-0afd-4589-ab90-36ba3b799d8a","originalAuthorName":"瞿翠凤"},{"authorName":"殷之文","id":"0c947f79-9702-4749-abb9-2003d6ae6679","originalAuthorName":"殷之文"}],"doi":"10.3321/j.issn:1000-324X.2000.01.019","fpage":"109","id":"222d5505-b35e-46f7-9dc5-533ba50c688d","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"8c943c90-4a77-46a1-ad1c-8c83397c7418","keyword":"铌镁酸铅","originalKeyword":"铌镁酸铅"},{"id":"473b54d4-d028-4359-8282-7546b198328f","keyword":"Pb(Mg1/3Nb2/3)O3-xPbTiO3","originalKeyword":"Pb(Mg1/3Nb2/3)O3-xPbTiO3"},{"id":"7b18e659-417a-4cc9-8ad9-c4396dcef6ae","keyword":"压电性","originalKeyword":"压电性"}],"language":"zh","publisherId":"wjclxb200001019","title":"铌镁酸铅-钛酸铅陶瓷介电与压电性能的研究","volume":"15","year":"2000"},{"abstractinfo":"综述了水泥基压电复合材料的研究进展.对于0-3型水泥基压电复合材料,压电陶瓷相的性能、复合材料的制备工艺以及微观结构等对其压电及介电性能有重要影响.压电陶瓷相含量越高、粒度越大,复合材料的压电响应就越大.提高极化电压有助于增强复合材料的压电响应.增加成型压力可提高复合材料微观结构的致密性,从而提高压电性能.总结了压电陶瓷的体积分数、形貌以及环境湿度与1-3型水泥基压电复合材料的性能关系,介绍了2-2型水泥基压电复合材料的传感效应及驱动效应的相关研究成果,最后展望了该领域的发展前景.","authors":[{"authorName":"李贵佳","id":"ed7146d4-17e9-4d30-a8ef-4da031591033","originalAuthorName":"李贵佳"},{"authorName":"全静","id":"b07a8583-b5ee-4470-b973-54b3a5d033ea","originalAuthorName":"全静"},{"authorName":"龚红宇","id":"28d4b84d-3231-4baf-b5e8-b7d15f327a03","originalAuthorName":"龚红宇"},{"authorName":"孙良成","id":"7544d29f-ea30-4a91-9590-ddcbe838ef20","originalAuthorName":"孙良成"}],"doi":"","fpage":"52","id":"0da775ed-8fdc-4586-ab8c-eb0eba4d6465","issue":"23","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"777f7028-ea9b-4d34-bea2-f49b32ef6515","keyword":"PZT","originalKeyword":"PZT"},{"id":"dcab70a7-7116-444a-a839-e0bb6e5f96fd","keyword":"水泥","originalKeyword":"水泥"},{"id":"914b3b2c-cbd6-444f-b466-6ea28a891623","keyword":"0-3型","originalKeyword":"0-3型"},{"id":"55ac4c65-2ae7-4eb5-9a13-914c3185dcea","keyword":"压电性","originalKeyword":"压电性"},{"id":"3d29e0e7-f5c1-4fb1-bc25-318c93c63505","keyword":"介电性","originalKeyword":"介电性"}],"language":"zh","publisherId":"cldb200923012","title":"水泥基压电复合材料的研究进展","volume":"12","year":"2009"}],"totalpage":4727,"totalrecord":47262}