{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"人造织构表面在润滑条件下,较光滑表面提高了润滑性能,减少磨损.为了深入了解织构表面形貌对流体润滑影响的机理,本文提出了规则凹坑表面油膜压力计算方案和公式,比较了粗糙表面与光滑表面的最小油膜厚度和压力分布.结果表明,低速、低载时,规则凹坑表面具有更大的最小油膜厚度,更接近弹流润滑的典型膜厚,而接触面间的最大油膜压力降低.","authors":[{"authorName":"李鹏","id":"c1850001-de09-461b-b1ad-82fa2ea4d5b5","originalAuthorName":"李鹏"},{"authorName":"李健","id":"b3dffb5f-038e-4179-aa99-efbdf3be3547","originalAuthorName":"李健"},{"authorName":"","id":"90753e3e-1a65-4b0d-a2b3-7adc18e02c28","originalAuthorName":""},{"authorName":"董光能","id":"2ee03522-b1c9-4c28-af7d-581d7cce7f4e","originalAuthorName":"董光能"}],"doi":"10.3969/j.issn.1001-1560.2004.z1.037","fpage":"123","id":"3388d076-b482-405d-895b-b2ebd0948aa5","issue":"z1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"d644f1e7-bc94-4049-af0f-5f356cc968b5","keyword":"人造织构表面","originalKeyword":"人造织构表面"},{"id":"b972bb5c-74d3-4519-bb63-40ed2b9971a0","keyword":"弹流","originalKeyword":"弹流"},{"id":"b2d459fa-cf38-43ba-b31d-2a66a44eeea6","keyword":"润滑膜","originalKeyword":"润滑膜"},{"id":"0a5baf5a-6475-416c-bacc-d37d3725343c","keyword":"压力计算","originalKeyword":"压力计算"}],"language":"zh","publisherId":"clbh2004z1037","title":"不同速度、载荷下点接触弹流润滑计算","volume":"37","year":"2004"},{"abstractinfo":"运用BP网络建立了平整轧制压力计算方法,实际应用结果表明:BP网络建立了平整轧制压力计算方法比较简单,计算精度高,计算误差小于8 %,完全可以应用于工程实际.","authors":[{"authorName":"魏立群","id":"c1875393-43d0-420d-9c04-1cd7d2e38d40","originalAuthorName":"魏立群"},{"authorName":"卢冬华","id":"92bb13fe-a53b-4b0f-a2ea-c66a65f62141","originalAuthorName":"卢冬华"}],"doi":"","fpage":"33","id":"f2a93d8f-043f-4420-a9a6-c9a5af636f2b","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"27a9d0b7-9f0f-474f-b321-bc3560bd45c8","keyword":"BP网络","originalKeyword":"BP网络"},{"id":"62f5f807-94da-44b2-b9cd-453fa0a59e38","keyword":"平整","originalKeyword":"平整"},{"id":"9fd58fff-f01b-4111-89b7-3751bb8b5188","keyword":"轧制压力","originalKeyword":"轧制压力"}],"language":"zh","publisherId":"gt200212010","title":"基于BP网络的平整轧制压力计算","volume":"37","year":"2002"},{"abstractinfo":"本文以Watts提出的求解代数方程组的附加修正值法为基础,在油藏压力数值计算中,提出了一种加快油藏压力计算迭代收敛速度的分块修正技术.在计算过程中,将原来的整个计算区块一个修正值,改变成根据边界以及各计算区块孔隙度的不同,对不同的计算区域分块修正.通过计算表明,在同等计算条件下,分块修正技术较之单块修正明显加快了计算迭代收敛速度,最后本文对分块修正加快收敛速度的原因做了分析.","authors":[{"authorName":"贾欣鑫","id":"8393c15f-27fb-4fb1-8c2d-5b1c694ce701","originalAuthorName":"贾欣鑫"},{"authorName":"徐明海","id":"a41464ca-0432-4948-8edf-3c9f223aade3","originalAuthorName":"徐明海"},{"authorName":"王胜","id":"cf6e86b5-70cd-421e-a5d7-be2db6caf430","originalAuthorName":"王胜"},{"authorName":"胡国华","id":"45eef63a-53a0-45e8-906e-54185da8d280","originalAuthorName":"胡国华"},{"authorName":"梁卓","id":"07f66e9d-3578-4bb9-89a1-1a2cffa21be8","originalAuthorName":"梁卓"}],"doi":"","fpage":"545","id":"01c4e309-4375-4230-be00-8b70297e57e9","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"699b6024-138c-42fd-a516-ee290536089b","keyword":"油藏数值模拟","originalKeyword":"油藏数值模拟"},{"id":"7eb1bdf2-b7ad-41a2-bc68-c9c05f9abe79","keyword":"压力修正","originalKeyword":"压力修正"},{"id":"fe7458ba-8b57-4c0a-8b05-042430977ee3","keyword":"多块修正","originalKeyword":"多块修正"},{"id":"0f9e5f04-f942-4267-8ecc-7568b27cf47d","keyword":"TDMA算法","originalKeyword":"TDMA算法"}],"language":"zh","publisherId":"gcrwlxb201403030","title":"加快油藏压力计算收敛速度的数值方法—分区块修正","volume":"35","year":"2014"},{"abstractinfo":"目前凝析气井井筒压力计算仍在沿用常规气井的方法,由于对井筒相态考虑不充分,计算精度无法满足动态分析和生产管理的需求.本文从凝析气井井筒相态特性出发,结合井筒温度分布,以气液相平衡计算为基础,建立了凝析气井生产过程综合考虑井筒温度、相态变化的压力计算模型,运用隐式差分格式并结合具体实例对凝析气井生产过程井筒压力分布进行了研究和计算.从计算结果看,该方法考虑了井筒温度及相态变化,因而井底压力计算结果与实际情况更接近,可以解决压力计无法下入产层中部或不能正常测试的问题,作为凝析气井压力测试的替代手段,在仅进行井口参数测量的情况下能够帮助完成凝析气井常规的生产动态分析工作,从而节省测试所需的大量人力、物力.","authors":[{"authorName":"孟悦新","id":"53bd09e9-2ac1-4a03-ab19-81522f7ba5e6","originalAuthorName":"孟悦新"},{"authorName":"李相方","id":"7e6ac335-0d2e-4545-bd80-afbe83f9c26c","originalAuthorName":"李相方"},{"authorName":"尹邦堂","id":"4743974b-b22f-4232-ac7f-d1769ac1e12e","originalAuthorName":"尹邦堂"},{"authorName":"齐明明","id":"1c0727bb-9103-43a9-924f-762648dc6d22","originalAuthorName":"齐明明"}],"doi":"","fpage":"1508","id":"c1f6bea1-92ba-44d7-84fc-a59e021c3be9","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1e04fb44-9f83-457a-b994-2c7eb17ead54","keyword":"凝析气井","originalKeyword":"凝析气井"},{"id":"bf15ae67-7746-45d8-9ff9-feef2604e748","keyword":"相平衡","originalKeyword":"相平衡"},{"id":"b6130f4f-f63f-4939-986a-c717009dd5a3","keyword":"温度","originalKeyword":"温度"},{"id":"5359f0f7-42d9-459c-9aab-e07d32d95a29","keyword":"流压","originalKeyword":"流压"},{"id":"7a4f612c-d922-4dcb-9b86-6d935a6f9e35","keyword":"差分","originalKeyword":"差分"}],"language":"zh","publisherId":"gcrwlxb201009017","title":"凝析气井井筒流动压力分布计算方法","volume":"31","year":"2010"},{"abstractinfo":"采用轧制-拉伸法建立了铸轧铝坯的变形抗力模型;根据实测轧制压力并利用 Hill 显式估算得出铝箔粗轧机和中轧机轧制过程的摩擦系数;提出了变形速度系数的算法;推导了 Hill 显式的无解条件及最小可轧厚度公式.","authors":[{"authorName":"吴瑞峰","id":"53824b71-1a8e-403a-8d21-34800cb76903","originalAuthorName":"吴瑞峰"},{"authorName":"林大为","id":"6a543641-bbb0-488c-bae1-038c0ca195c3","originalAuthorName":"林大为"}],"doi":"10.3969/j.issn.1001-7208.2003.04.008","fpage":"36","id":"940a98d5-4404-4cc4-b522-e6f17f96f02e","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"84612fc6-b1be-4ea7-b8fb-c9699995b091","keyword":"铝箔","originalKeyword":"铝箔"},{"id":"415e1b21-dc9e-4bf9-b7d0-c201508a49d8","keyword":"轧制压力","originalKeyword":"轧制压力"},{"id":"7025437e-73a5-402b-b4c4-ab80c9d2eb7c","keyword":"Hill","originalKeyword":"Hill"},{"id":"b334b4a5-aa54-4a04-b9d5-63a4c9e6d59f","keyword":"显式计算","originalKeyword":"显式计算"},{"id":"e7aceb5e-bae4-41f8-bf48-a19bed8411fe","keyword":"最小可轧厚度","originalKeyword":"最小可轧厚度"}],"language":"zh","publisherId":"shjs200304008","title":"铝箔轧制压力计算","volume":"25","year":"2003"},{"abstractinfo":"本文建立了均质形核条件下压力与温度对形核率影响的数学方程,用此方程计算了Betol压力下结晶的形核数。得出在压力不变条件下,形核率-温度曲线出现一峰值,增加压力此峰值向高温方向移动。对于结晶时体积收缩的晶体物质,在温度不变的条件下,形核率-压力曲线也出现峰值,温度升高此峰值向高压方向移动。","authors":[{"authorName":"齐丕骧","id":"71134ff8-a2bb-43e3-a7f8-50d2cef5d6c4","originalAuthorName":"齐丕骧"}],"categoryName":"|","doi":"","fpage":"465","id":"ca2208c5-9df4-4042-9f25-71401293f14f","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1984_6_10","title":"对压力下结晶形核率的理论计算","volume":"20","year":"1984"},{"abstractinfo":"用于固体火箭发动机壳体和工业贮罐的纤维缠绕压力容器,爆破压强是重要的设计参数。本文基于网络理论,给出了纤维缠绕圆筒压力容器圆筒和封头爆破压强的计算方法,给出了用模拟实验压力容器确定纤维发挥强度的方法。算例表明,计算值与实测结果符合良好。这些方法可供纤维缠绕压力容器设计者参考或直接应用。","authors":[{"authorName":"陈汝训","id":"80fb394b-fb06-47fa-856e-baf7e4df694b","originalAuthorName":"陈汝训"}],"doi":"10.3969/j.issn.1007-2330.2000.06.006","fpage":"28","id":"6be30c3b-9e73-4476-87cc-c79b942f0c92","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"3cb064c1-03b9-41fe-833f-4760de5d79e4","keyword":"纤维缠绕","originalKeyword":"纤维缠绕"},{"id":"c39cebc6-d706-450a-abed-24a930ca9044","keyword":"压力容器","originalKeyword":"压力容器"},{"id":"869ecb08-d188-461b-9386-14ebc23c62cc","keyword":"爆破压强","originalKeyword":"爆破压强"},{"id":"4b33a707-b8e0-4788-8ac1-0a45912b6d7b","keyword":"发挥强度","originalKeyword":"发挥强度"}],"language":"zh","publisherId":"yhclgy200006006","title":"纤维缠绕压力容器爆破压强计算","volume":"30","year":"2000"},{"abstractinfo":"本文通过Franc3D软件,计算压力容器表面裂纹失稳扩展的临界尺寸及不同尺寸的初始裂纹的扩展,发现当容器表面的初始椭圆形裂纹尺寸小于3 mm×20 mm及5 mm×10 mm时,在裂纹穿透壁厚之前,裂纹尖端的应力强度因子都小于压力容器用钢的断裂韧性KIC,故该裂纹不会发生失稳扩展,且上述两个初始裂纹穿透容器壁厚时的循环载荷次数分别为40 688、45 560次.","authors":[{"authorName":"常磊","id":"5cad8b07-9a80-46da-8ad5-440a74d42f4a","originalAuthorName":"常磊"},{"authorName":"邓春锋","id":"11959918-33cc-432e-8d93-13add6086633","originalAuthorName":"邓春锋"},{"authorName":"任方杰","id":"b5f70623-89b6-4f19-9336-04ce2fd7ec6b","originalAuthorName":"任方杰"},{"authorName":"邵飞","id":"2563acd2-7ffa-45a9-beae-a971f7cac37a","originalAuthorName":"邵飞"},{"authorName":"武春学","id":"ec7ea1e0-5420-42df-aa6f-d5dfc92ee4b1","originalAuthorName":"武春学"},{"authorName":"梅鹏程","id":"03349200-c94a-4da0-ae2b-ee31cf38ee49","originalAuthorName":"梅鹏程"}],"doi":"","fpage":"95","id":"a5327513-7b54-4729-9d7d-fd0110f5c566","issue":"5","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"38c66c26-006f-4881-95e8-8f1300ac2fd1","keyword":"数值计算","originalKeyword":"数值计算"},{"id":"1cdb4a07-b43b-4e98-94cf-c72139c73fc9","keyword":"疲劳裂纹扩展","originalKeyword":"疲劳裂纹扩展"},{"id":"5267bc6d-ed1c-476c-a045-60cb9ed4267a","keyword":"FRANC3D","originalKeyword":"FRANC3D"}],"language":"zh","publisherId":"clkfyyy201305021","title":"压力容器表面裂纹疲劳扩展的数值计算","volume":"28","year":"2013"},{"abstractinfo":"本文将利用RNG κ-ε湍流模型对轴流式模型水轮机进行了全流道三维非定常湍流计算,预测模型水轮机的压力脉动性能.同时,本文对轴流式模型水轮机进行了压力脉动试验,通过对模型水轮机压力脉动试验结果与数值计算结果的对比,以验证数值计算预测压力脉动性能的准确性和可行性.","authors":[{"authorName":"邵杰","id":"903c66ce-5338-47ba-8c0a-12989ffc45ef","originalAuthorName":"邵杰"},{"authorName":"刘树红","id":"aedfac22-192d-4d99-92f5-3d1bd623159c","originalAuthorName":"刘树红"},{"authorName":"吴墒锋","id":"d7991d4d-7ebc-4964-bb34-71dc72aa2c29","originalAuthorName":"吴墒锋"},{"authorName":"吴玉林","id":"f52d03de-ca89-4891-9fa8-d553f462d7c4","originalAuthorName":"吴玉林"}],"doi":"","fpage":"783","id":"60714b5e-fbac-4d62-8e4a-fc761cc33af5","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"cb5656b8-3142-49c2-99b3-6ab1cb812bbd","keyword":"RNG κ-ε湍流模型","originalKeyword":"RNG κ-ε湍流模型"},{"id":"4bce7e02-2302-45ca-8ee8-0f5e1f06fd54","keyword":"轴流式水轮机","originalKeyword":"轴流式水轮机"},{"id":"642cf3af-4a51-44e9-ba6e-6ce31e9a45c0","keyword":"压力脉动","originalKeyword":"压力脉动"}],"language":"zh","publisherId":"gcrwlxb200805016","title":"轴流式模型水轮机压力脉动试验与数值计算预测","volume":"29","year":"2008"},{"abstractinfo":"把钢卷径向弹性模量作变量处理,同时考虑卷取过程中卷筒的缩径,从而建立了卷取过程钢卷内部应力分布以及卷取机卷筒单位压力计算的数学模型,与实际情况较吻合.","authors":[{"authorName":"白振华","id":"cc416185-8ce8-4f6d-aebc-5bd716064a72","originalAuthorName":"白振华"},{"authorName":"连家创","id":"bc58d26b-2a0c-4e32-b0fb-fe81cbc93184","originalAuthorName":"连家创"}],"doi":"10.3969/j.issn.1001-7208.2002.02.002","fpage":"6","id":"3027d750-5bc1-4e25-bebd-d5e86f8af624","issue":"2","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"4a23c740-c123-4831-af77-8896ed32c969","keyword":"钢卷","originalKeyword":"钢卷"},{"id":"943d73ff-d3c2-44f3-bac3-63697f75939d","keyword":"卷取","originalKeyword":"卷取"},{"id":"e7396fd4-697d-426f-8b8b-583c6b483e65","keyword":"应力","originalKeyword":"应力"},{"id":"5ff7fdc8-9ddb-416a-9fb9-170bb76a3b51","keyword":"卷筒","originalKeyword":"卷筒"}],"language":"zh","publisherId":"shjs200202002","title":"卷取过程中钢卷内部应力的计算","volume":"24","year":"2002"}],"totalpage":2470,"totalrecord":24698}