{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以一步模压工艺,采取化学交联法发泡聚丙烯(PP),研究了发泡过程中工艺条件、配方对最终产物结构和性能的影响.获得了性能较优异的发泡聚丙烯的发泡工艺条件及配方:上下横板温度180℃-190℃,模压压力7.5MPa-10.0MPa;发泡剂AC用量1.0%-1.5%,交联剂DCP用量0.1%-0.3%,成核剂SiO2用量0.15%-0.25%.","authors":[{"authorName":"杨霄云","id":"6ef0d248-be20-4ae4-9559-bea22fac4ccf","originalAuthorName":"杨霄云"},{"authorName":"王爱东","id":"14be53de-9162-4673-afaa-798340fe4bcd","originalAuthorName":"王爱东"}],"doi":"10.3969/j.issn.1671-5381.2011.01.006","fpage":"24","id":"d6a0150f-86ce-4b21-a923-bc9975bac4de","issue":"1","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"4049f4db-8c67-4081-bc72-cccdf45f3211","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"a473033f-cfa5-4aae-8e5d-e97b7f8ba58c","keyword":"化学交联","originalKeyword":"化学交联"},{"id":"d38a91a8-04f7-4816-b4a2-e3bf7b954a66","keyword":"模压发泡","originalKeyword":"模压发泡"}],"language":"zh","publisherId":"hccllhyyy201101006","title":"化学交联模压发泡聚丙烯的研究","volume":"40","year":"2011"},{"abstractinfo":"化学交联是提高质子交换膜性能的一种有效方法.交联质子交换膜具有较低的水溶胀性、甲醇渗透性,以及较高的热、力学稳定性.使用化学交联法制备质子交换膜时,通常采用交联聚合物磺化法、磺化聚合物交联法和共混聚合物交联法等三种方法.采用不同方法交联时,交联活性点的选取各不相同,制备的交联质子交换膜性能也有差异.深入研究交联程度、离子交换容量、交联剂种类等不同制备条件对交联膜的微观结构及性能的影响,才能使交联质子交换膜的综合性能得到优化.","authors":[{"authorName":"吴雪梅","id":"2527b181-9e95-494b-911c-c6cd7908882e","originalAuthorName":"吴雪梅"},{"authorName":"贺高红","id":"951b24fe-94b4-462f-be43-5d2ef622c22b","originalAuthorName":"贺高红"},{"authorName":"顾爽","id":"1ff29c34-2800-4a72-8a8a-abd46834fb29","originalAuthorName":"顾爽"},{"authorName":"董春旭","id":"b50446d3-c6ba-49bf-ad2b-4363443790c5","originalAuthorName":"董春旭"},{"authorName":"姚平经","id":"d0022e60-7a2d-4267-a7e0-4292af106bb1","originalAuthorName":"姚平经"}],"doi":"","fpage":"28","id":"49bbcdf8-96b3-4c5f-b9cd-e2652010fc25","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"949c8b96-4b2b-42da-a1a8-4269b6b83207","keyword":"化学交联","originalKeyword":"化学交联"},{"id":"e6af57f0-0741-42ef-b485-444c43cd13e7","keyword":"质子交换膜","originalKeyword":"质子交换膜"},{"id":"e2b9a404-d96e-4801-a342-a0c9ed64c5bf","keyword":"燃料电池","originalKeyword":"燃料电池"},{"id":"38c1fad4-abbf-4318-a01d-5c3abc6851b6","keyword":"聚合物改性","originalKeyword":"聚合物改性"}],"language":"zh","publisherId":"gfzclkxygc200604007","title":"化学交联法在质子交换膜制备中的应用","volume":"22","year":"2006"},{"abstractinfo":"以2D树脂作交联剂,以明胶-阿拉伯胶艾叶油微胶囊对棉织物进行功能整理.运用扫描电子显微镜及傅立叶红外光谱对织物进行表征,并对织物耐水洗性能、防皱性能及甲醛含量进行了测试.结果表明,微胶囊、棉纤维分别与2D树脂发生了化学交联反应,通过2D树脂的桥梁连接作用,微胶囊被固着在棉织物上,提高了微胶囊织物抗菌耐洗涤效果,同时2D树脂赋予织物良好的防皱性能,且化学交联作用在一定程度上减缓了织物甲醛释放速度和降低了甲醛的释放含量.","authors":[{"authorName":"杨子明","id":"7a45c885-e161-4dff-9d6b-b0d02fb3ba04","originalAuthorName":"杨子明"},{"authorName":"李鹂","id":"82b0402a-bc55-42db-b1de-d215d23ae0ac","originalAuthorName":"李鹂"},{"authorName":"欧韦文","id":"bf57de14-2194-423c-a810-b178aa8102ff","originalAuthorName":"欧韦文"},{"authorName":"钟慧仪","id":"7c5a5a59-cf47-4915-b11b-5a418ea08ff6","originalAuthorName":"钟慧仪"},{"authorName":"汪国成","id":"298a1ab2-88dd-4742-94f2-f3aac7dff96a","originalAuthorName":"汪国成"},{"authorName":"何冠茹","id":"7c34215b-82a6-4756-80fb-dd858ccfdcfc","originalAuthorName":"何冠茹"},{"authorName":"邓思贤","id":"da09dc16-9fde-4bd4-a240-60a582fc87a1","originalAuthorName":"邓思贤"},{"authorName":"杨卓鸿","id":"f66d703e-290b-4209-8f45-393f282e0238","originalAuthorName":"杨卓鸿"}],"doi":"","fpage":"118","id":"50cab5c9-c720-4146-ac53-a48377fc7fe5","issue":"7","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"13e47239-5ad4-44ef-b23c-ee7644be3ae2","keyword":"化学交联","originalKeyword":"化学交联"},{"id":"22521c1a-4424-4385-becd-8b4369a40e2d","keyword":"微胶囊","originalKeyword":"微胶囊"},{"id":"c65a4eed-6c62-4577-98e3-0ec591517367","keyword":"织物","originalKeyword":"织物"},{"id":"a07ea3a9-7dfb-47e8-95c8-c74a0c345bd9","keyword":"2D树脂","originalKeyword":"2D树脂"}],"language":"zh","publisherId":"gfzclkxygc201007031","title":"微胶囊化学交联法对棉织物的功能整理","volume":"26","year":"2010"},{"abstractinfo":"研究了分别以微量的三羟甲基丙烷(TMP)和端异氰酸酯基的预聚体为交联剂的微化学交联TPU的动态力学性能的变化,分析了微量化学交联的TPU中化学交联对其形态结构的影响.结果表明,当以TMP为交联剂时,交联程度的增加会导致TPU软、硬微区相容性的增强,从而使其Tg和力学损耗值都上升;而当以端异氰酸酯基预聚体为交联剂时,交联程度的增加仅仅只会加强TPU软、硬微区间的相互联系作用,因而其Tg和力学损耗值变化不显著.","authors":[{"authorName":"张永成","id":"37ebf051-c17e-44fb-a2de-8c018db44fc7","originalAuthorName":"张永成"},{"authorName":"赵雨花","id":"6968c224-3e98-4d6a-a2ad-fb6e8e70a2a0","originalAuthorName":"赵雨花"},{"authorName":"康茂青","id":"f4f656e4-99c8-4a85-9af1-d8f3ea077f6c","originalAuthorName":"康茂青"},{"authorName":"王心葵","id":"0dc9c98e-4218-412a-b29d-dddd33d1d948","originalAuthorName":"王心葵"}],"doi":"","fpage":"165","id":"d597bcd4-5b23-4889-8a99-de53d0bdd035","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a3b5839a-f2f2-4d05-ae55-b65960d6be9c","keyword":"热塑性聚氨酯","originalKeyword":"热塑性聚氨酯"},{"id":"72e9bf23-778a-42ee-8cb9-3cced701cf35","keyword":"化学交联","originalKeyword":"化学交联"},{"id":"56b7c65f-5c2e-438b-955c-7247cbd0e2f3","keyword":"动态力学性能","originalKeyword":"动态力学性能"},{"id":"aac182ed-e523-4165-bb38-e430349a90c9","keyword":"形态结构","originalKeyword":"形态结构"}],"language":"zh","publisherId":"gfzclkxygc200406042","title":"TPU弹性体中化学交联对其形态影响的动态力学分析","volume":"20","year":"2004"},{"abstractinfo":"采用非等温多个扫描速率的热分析动力学方法,利用差示扫描量热仪(DSC)线性升温数据,详细研究了部分氢化的聚苯乙烯-聚丁二烯-聚苯乙烯三嵌段共聚物(SEBS)在交联剂双叔丁基过氧化二异丙苯(BIPB)存在下的化学交联机理模型.根据Friedman微分法和非线性回归得到了精确的交联反应机理模型,并得到了确切的动力学方程和动力学参数.研究发现,BIPB引发的SEBS交联经历了明显的三步反应, BIPB的分解反应是交联反应的控制步骤.根据机理模型的计算发现,为了得到适应不同应用范围的交联SEBS,需要根据不同的情况选择合适的交联温度,控制适当的反应时间来得到相应交联程度的SEBS产品.热分析动力学是筛选合适交联剂,选择最优交联反应条件的有效手段.","authors":[{"authorName":"周涛","id":"73b301d7-05ed-4e0f-9a51-633c8527691a","originalAuthorName":"周涛"},{"authorName":"张爱民","id":"f69e0d1e-41a2-4854-8a0c-cedb1b0851df","originalAuthorName":"张爱民"},{"authorName":"徐建波","id":"76ce657d-06ba-4173-a142-34e888b440d7","originalAuthorName":"徐建波"},{"authorName":"邬智勇","id":"21523b15-af32-4f98-bb8f-666110949006","originalAuthorName":"邬智勇"},{"authorName":"夏金魁","id":"9cc48d03-8e7c-4810-a213-d13aec5f8e01","originalAuthorName":"夏金魁"},{"authorName":"梁红文","id":"58431dc4-d9cf-4d4f-a526-1b2792f65953","originalAuthorName":"梁红文"}],"doi":"","fpage":"117","id":"acb3ad9d-0cb1-4f76-afb4-29a301bd2636","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"62d11864-e91d-450a-9807-ec8f1996c333","keyword":"热分析动力学","originalKeyword":"热分析动力学"},{"id":"a471cab9-b52c-4f1a-bed7-a1ab45c0d2f5","keyword":"非等温","originalKeyword":"非等温"},{"id":"05bd32f9-f4c8-4ba8-a0ee-0013fffd90e4","keyword":"SEBS","originalKeyword":"SEBS"},{"id":"f41e19d5-56f5-46cb-baf1-e31dd0bf4e01","keyword":"化学交联","originalKeyword":"化学交联"},{"id":"100e3a20-c334-444a-a270-52216b7f7313","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"gfzclkxygc200804029","title":"热分析动力学方法研究SEBS化学交联的机理","volume":"24","year":"2008"},{"abstractinfo":"综述了应用化学方法交联聚氯乙烯(PVC)的研究进展,着重介绍了过氧化物交联、硅烷交联、三嗪类化合物交联、化学微交联、共混交联等交联方法.并指出了这些交联方法中存在的问题和发展方向.","authors":[{"authorName":"马青赛","id":"3a158ecd-e384-4dc6-9a6c-370da12fcc7c","originalAuthorName":"马青赛"},{"authorName":"贾润礼","id":"9a8957a5-0186-45d2-9524-f5c331583312","originalAuthorName":"贾润礼"}],"doi":"10.3969/j.issn.1009-9239.2007.04.008","fpage":"29","id":"1f6c9893-270c-467d-9081-c18412654a2c","issue":"4","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"da9cd70f-d4a7-4c2e-921c-16f3461e5e04","keyword":"聚氯乙烯","originalKeyword":"聚氯乙烯"},{"id":"9d800826-49fb-495a-894c-d51a8897fc8b","keyword":"化学交联","originalKeyword":"化学交联"},{"id":"bf59e0af-d8a5-4b48-857b-80d761fea384","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"jycltx200704008","title":"聚氯乙烯化学交联方法的研究进展","volume":"40","year":"2007"},{"abstractinfo":"以丙烯酰胺(AM)和海藻酸钠(SA)为功能单体,N,N’-亚甲基双丙烯酰胺(MBA)和CaCl2为交联剂,制备得到化学/离子复合交联术凝胶(CIC型),同时合成出化学交联(CC)、离子交联(IC)和半互穿化学交联(SCC)型水凝胶作为对比,采用紫外可见分光光度计、场发射扫描电镜、称重仪和单纤维强力机对4种水凝胶的透光度、孔洞结构、溶胀行为和力学性能进行了研究.结果表明,CC型水凝胶的吸光度值为0.049,透光性最好,透光性由好及坏顺序为CC> SCC> CIC>IC;CIC方式制得的水凝胶吸光度为0.621;最大断裂应力为158.9 kPa,分别是CC型和SCC型水凝胶的5.17倍和1.96倍;最大拉伸倍数和最大溶胀比(MSR)为4.29 g/g和13.70 g/g,分别是IC型水凝胶的9.77倍和12.38倍;场发射扫描电镜结果表明CIC水凝胶具有海绵状规整的微孔结构,是用于替代肌腱组织的理想材料.","authors":[{"authorName":"张念一","id":"9f061e26-f8a7-4440-9e45-84ea69e8d36d","originalAuthorName":"张念一"},{"authorName":"黄秀晶","id":"8c029894-9a4c-4113-a0f4-ce97420f416b","originalAuthorName":"黄秀晶"},{"authorName":"张青松","id":"0c06a1b1-bd96-46e9-ae0d-2790551d1664","originalAuthorName":"张青松"},{"authorName":"王万俊","id":"5f05f2dd-f1f0-4963-bdd9-c83ab67d8b75","originalAuthorName":"王万俊"},{"authorName":"陈莉","id":"e2ff966f-9937-4ddd-827b-5059536a2f1a","originalAuthorName":"陈莉"}],"doi":"","fpage":"64","id":"6a64fa71-f6f5-47a3-b5d7-67b9515b70b9","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"88458030-4ae9-4252-b990-ec1261124a25","keyword":"水凝胶","originalKeyword":"水凝胶"},{"id":"cfdf0f13-3a1b-42e9-8ce6-52e7d82613a3","keyword":"化学交联","originalKeyword":"化学交联"},{"id":"7db6c87f-40e7-4e4c-992c-ed2f98cc7e13","keyword":"离子交联","originalKeyword":"离子交联"},{"id":"c2886d0a-597e-41d0-8241-031a628390e4","keyword":"半互穿","originalKeyword":"半互穿"},{"id":"292ef9d2-8a20-43c0-acca-8e7a1390e930","keyword":"肌腱","originalKeyword":"肌腱"}],"language":"zh","publisherId":"gfzclkxygc201404014","title":"化学/离子交联水凝胶的透光度溶胀行为和力学性能","volume":"30","year":"2014"},{"abstractinfo":"以过氧化二异丙苯(DCP)为交联剂、三烯丙基异氰脲酸酯(TAIC)为助交联剂、偶氮二甲酰胺(AC)为发泡剂,采用一步法化学交联模压发泡制备聚丙烯发泡材料(EPP),考察不同塑化参数(温度和时间)与模压工艺(温度和时间)对EPP材料力学性能的影响.结果表明,当DCP用量为1.2~1.4份,物料在130℃~140℃温度下塑化10 min~15 min后,置于150℃~160℃平板硫化机中模压25 min~30min,可得到密度介于190 g/cm3~240 g/cm3,且力学性能较优的EPP材料.偏光显微镜观察结果表明,当DCP用量为1.4份时,EPP材料的泡孔结构均匀且细密.","authors":[{"authorName":"张雯","id":"10ac9a92-d2e2-4b4c-a89e-33c2d86d4256","originalAuthorName":"张雯"},{"authorName":"林剑英","id":"b1c32b19-ea72-4df6-ac1f-26a9e920ac7a","originalAuthorName":"林剑英"},{"authorName":"王月香","id":"e5302cc0-faf8-4e6d-ace1-da26cdbae05e","originalAuthorName":"王月香"},{"authorName":"林为","id":"f74d5f09-d3f2-4752-add9-aebcfe579dbb","originalAuthorName":"林为"},{"authorName":"张华集","id":"9a0d0134-5db7-40ff-8522-77c0165f38df","originalAuthorName":"张华集"}],"doi":"","fpage":"118","id":"f66efd27-6442-4d33-bcfc-c75f634e4e95","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"bd2ff991-8c9e-4a4f-84b8-0609d9c112e3","keyword":"聚丙烯发泡材料","originalKeyword":"聚丙烯发泡材料"},{"id":"c637f114-f72b-4792-b5c0-2939a3a86944","keyword":"化学交联","originalKeyword":"化学交联"},{"id":"7dfcea14-94a3-48c7-bf3e-a949158b77c1","keyword":"一步法模压","originalKeyword":"一步法模压"},{"id":"3067838a-c661-42dc-8dd6-cbdfe9f6a848","keyword":"凝胶率","originalKeyword":"凝胶率"}],"language":"zh","publisherId":"gfzclkxygc201106032","title":"一步法交联模压发泡聚丙烯的力学性能","volume":"27","year":"2011"},{"abstractinfo":"以玉米醇溶蛋白(Zein)为原料,通过化学交联,混纺改性和酶法交联三种改性方法,制备了改性Zein纳米纤维.使用凝胶渗透色谱仪(GPC),红外光谱(FTIR),扫描电镜(SEM),表面张力仪(ST)以及电子万能试验机(EUTM)等手段对改性后不同纤维的性能进行表征.结果表明,改性后纤维的形貌基本不变,平均直径有所降低.改性后纤维的水稳定性提高,这与改性后纤维的亲水性下降相对应.纤维的力学性能较改性前有大的提高,其中化学交联对纤维力学性能提高效果最为明显.","authors":[{"authorName":"陈晓东","id":"51a63edf-2cb9-44ba-b859-f5d276105cd6","originalAuthorName":"陈晓东"},{"authorName":"岳亚丹","id":"63fb7b43-1b6c-4394-9ed3-630b74ded1c3","originalAuthorName":"岳亚丹"},{"authorName":"李大伟","id":"741f0d84-aa5a-4e6b-8aab-8e76dea586a2","originalAuthorName":"李大伟"},{"authorName":"杨洁","id":"713cedcb-8188-466f-9cbd-229dd475c588","originalAuthorName":"杨洁"},{"authorName":"黄锋林","id":"21b9fe86-c927-4ac2-81c4-c33150793f2a","originalAuthorName":"黄锋林"},{"authorName":"魏取福","id":"3692608f-3bc1-4a4d-b7ba-c046723863d7","originalAuthorName":"魏取福"}],"doi":"","fpage":"241","id":"e63a759d-29d6-49b7-8468-35d9e57484eb","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"7506a4cc-86b4-4075-82b9-3c3705e18b8e","keyword":"化学交联","originalKeyword":"化学交联"},{"id":"f020e72d-f52d-42b0-bc08-e71ab49b4bd8","keyword":"混纺改性","originalKeyword":"混纺改性"},{"id":"7bb92a12-2a5f-4a70-8bc7-0394414cea78","keyword":"酶法交联","originalKeyword":"酶法交联"},{"id":"716aa0ec-fc0c-487b-8e00-09aea7ef5642","keyword":"玉米醇溶蛋白","originalKeyword":"玉米醇溶蛋白"},{"id":"e10b2b67-ea51-449c-ac77-ccea0ec4dc12","keyword":"静电纺","originalKeyword":"静电纺"},{"id":"07fe8b53-91ba-4b62-bb14-f3d9c3ae65dc","keyword":"纳米纤维","originalKeyword":"纳米纤维"}],"language":"zh","publisherId":"clkxygc201502018","title":"不同改性法对玉米醇溶蛋白纳米纤维性能的影响","volume":"33","year":"2015"},{"abstractinfo":"以乙二醇缩水甘油醚作为交联剂,用化学交联法合成聚谷氨酸高吸水树脂,研究了聚合物浓度、交联剂、Ph值、反应时间等条件对凝胶吸水性能的影响.结果表明,适宜的反应条件为聚谷氨酸12%,交联剂用量为聚谷氨酸量的 18.75%,Ph 5左右,40 ℃水浴恒温振荡反应48 h,所得树脂的最高吸水率可达1600 g/g.","authors":[{"authorName":"张新民","id":"7c8d44dd-70ae-4d5c-a7ef-f6a3b54e3e1c","originalAuthorName":"张新民"},{"authorName":"游庆红","id":"4018b564-6dab-4384-81f4-b099f10cdd6b","originalAuthorName":"游庆红"},{"authorName":"徐虹","id":"167db2c0-1071-44ba-b85b-6d4ceae8521a","originalAuthorName":"徐虹"},{"authorName":"刘晓宁","id":"f5edf2a0-da57-4deb-81e5-6e0fc947fde1","originalAuthorName":"刘晓宁"},{"authorName":"欧阳平凯","id":"882dd368-74c7-4d83-8d7f-2c84be88ff63","originalAuthorName":"欧阳平凯"}],"doi":"","fpage":"203","id":"5fbf1464-c47f-4992-be4a-1e197d8822d1","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"e54ecb45-37ad-4b5d-84dc-71ebce89ca3d","keyword":"聚谷氨酸","originalKeyword":"聚谷氨酸"},{"id":"0e981dee-8e78-4fc1-8b26-1cf4a11889d6","keyword":"乙二醇缩水甘油醚","originalKeyword":"乙二醇缩水甘油醚"},{"id":"f2d5da8b-d13f-4330-b672-3c12cdcaa641","keyword":"化学交联","originalKeyword":"化学交联"},{"id":"7093a922-48a7-430b-b3c9-9dfb52df3fb3","keyword":"高吸水树脂","originalKeyword":"高吸水树脂"}],"language":"zh","publisherId":"gfzclkxygc200302052","title":"生物可降解型聚谷氨酸高吸水树脂的制备","volume":"19","year":"2003"}],"totalpage":3256,"totalrecord":32551}