{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"阐述了研究与开发大粒回收装置的目的与意义,介绍了大粒回收装置的工作原理、工艺流程、及其在采船上的应用情况.","authors":[{"authorName":"张姝湘","id":"fd8d90fe-fab8-415d-85ec-4e64e81e86cb","originalAuthorName":"张姝湘"},{"authorName":"王桂英","id":"a06f8f85-a8a7-4996-af54-693f90b5e50b","originalAuthorName":"王桂英"},{"authorName":"陈华","id":"4abcda28-51dd-4267-9678-23f78a706cbe","originalAuthorName":"陈华"}],"doi":"10.3969/j.issn.1001-1277.2004.06.014","fpage":"48","id":"6bedb2b6-fd51-476d-801a-2179ac1d743b","issue":"6","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"e161ebe0-aa6f-4851-8f0a-b9c54c31d870","keyword":"大粒","originalKeyword":"大粒金"},{"id":"3b3427eb-9aa2-407f-a833-7554ab5ae5ff","keyword":"回收装置","originalKeyword":"回收装置"},{"id":"bdaf6024-df25-4b96-9de3-1b2efa4ed4f1","keyword":"回收率","originalKeyword":"回收率"}],"language":"zh","publisherId":"huangj200406014","title":"大粒回收装置及其应用","volume":"25","year":"2004"},{"abstractinfo":"以草酸为沉淀剂,研究了制备大颗粒氧化钕的工艺,考察了反应温度、溶液酸度、添加剂浓度、陈化时间等因素对氧化钕粒径(Ds0)的影响,并确定了草酸钕的灼烧温度.根据实验结果确定了适宜的制备工艺,并按此工艺制备出了粒径在50μm~150μm范围内,分散均匀的大粒度氧化钕.研究结果表明,采用该工艺制备大颗粒稀土氧化物可行,且操作简单,产品质量稳定,易于推广到工业生产.","authors":[{"authorName":"马莹","id":"a322d20b-5bb1-40a7-8fec-49e82fa48c29","originalAuthorName":"马莹"},{"authorName":"王宝荣","id":"703338dc-0e01-49bd-8f5e-56cac5f8dd54","originalAuthorName":"王宝荣"},{"authorName":"李莉娜","id":"e0b51ec5-f14d-402d-a923-e40015020b24","originalAuthorName":"李莉娜"},{"authorName":"乔军","id":"f0361a91-fead-44b9-bc7e-f68be57b22f3","originalAuthorName":"乔军"},{"authorName":"苏允兰","id":"1a706fb9-3201-4859-8f60-a6d67907a13e","originalAuthorName":"苏允兰"},{"authorName":"王晶晶","id":"6af1de79-1a64-4742-aad9-c623b517e01a","originalAuthorName":"王晶晶"}],"doi":"10.3969/j.issn.1004-0277.2011.05.012","fpage":"56","id":"3891aaea-4df2-49dd-8687-de3bfb3a0915","issue":"5","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"a86da61f-1f3b-49f2-bc3e-8c08c693dad7","keyword":"大粒度","originalKeyword":"大粒度"},{"id":"9114a55b-df85-427f-a287-0cdb903c0a21","keyword":"氧化钕","originalKeyword":"氧化钕"},{"id":"37baa557-6634-4a8c-9271-9a9472c3d345","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"xitu201105012","title":"大粒度氧化钕制备工艺研究","volume":"32","year":"2011"},{"abstractinfo":"本文对比了加入助剂制备的大粒径硅溶胶与普通硅溶胶的凝胶过程,重点考察了pH、胶粒粒径、温度、硅溶胶浓度、添加表面活性剂等对大粒径硅溶胶稳定性的影响,并采用TEM技术表征了大粒径硅溶胶的粒径增长方式.结果表明:加入助剂能提高大粒径硅溶胶的稳定性,而且硅溶胶的稳定性受硅溶胶粒径增长方式的影响.","authors":[{"authorName":"王力","id":"8bea845f-3508-4916-9173-a33df4d3551c","originalAuthorName":"王力"},{"authorName":"孟德芹","id":"1fba0668-df78-43e5-9c76-613e5b02a748","originalAuthorName":"孟德芹"},{"authorName":"田立朋","id":"5a7eb6b0-edec-4c4f-8150-b763c5769c09","originalAuthorName":"田立朋"},{"authorName":"刘聪","id":"97af5b1f-1189-4238-9d55-bb78b9b0c96d","originalAuthorName":"刘聪"},{"authorName":"庄春艳","id":"67c4acf3-9750-4252-abf5-fd9e7c08dd91","originalAuthorName":"庄春艳"},{"authorName":"方杰","id":"001ebcc3-33ec-4c99-a301-3802029ed652","originalAuthorName":"方杰"}],"doi":"","fpage":"731","id":"2d791db9-70d1-4318-8c33-c32b046612d1","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"282352dd-8b6b-4ed5-93ff-bef468359c68","keyword":"大粒径硅溶胶","originalKeyword":"大粒径硅溶胶"},{"id":"c1afac74-e41e-4a19-816c-33c1bd65e8f2","keyword":"稳定性","originalKeyword":"稳定性"},{"id":"91a19a77-a2a3-4e33-a4b3-cd0e24270cf9","keyword":"凝胶时间","originalKeyword":"凝胶时间"},{"id":"5c5f2c69-9b8f-46c6-b423-dbe964451907","keyword":"表面活性剂","originalKeyword":"表面活性剂"}],"language":"zh","publisherId":"gsytb201203050","title":"大粒径硅溶胶稳定性试验研究","volume":"31","year":"2012"},{"abstractinfo":"采用单质硅粉水解法,经过初级粒子制备和粒子多级生长,制备了单分散的大粒径硅溶胶,考察了反应温度、反应时间、硅粉添加量、氢氧化钠浓度等因素对粒径及PDI的影响.最优实验条件为:反应温度70℃、反应时间12h、硅粉添加量21 g、氢氧化钠浓度0.5wt%.最优条件下的硅溶胶粒径为20 nm,通过粒径的多次生长,制备出粒径为90 nm的硅溶胶,且呈单分散性.","authors":[{"authorName":"周波","id":"1dc5ca4c-b2f2-4b67-a610-c9c89b3ced8f","originalAuthorName":"周波"},{"authorName":"张春芳","id":"0b128b0f-52fb-4c50-af1b-fc86d5ac8e33","originalAuthorName":"张春芳"},{"authorName":"白云翔","id":"f283120c-9284-401d-9a9a-5caffc54b480","originalAuthorName":"白云翔"},{"authorName":"顾瑾","id":"fb7f70a4-845d-4360-b840-9b009d85403f","originalAuthorName":"顾瑾"},{"authorName":"孙余凭","id":"a5491af1-5c38-48fb-97fd-b15bdd5b10cd","originalAuthorName":"孙余凭"}],"doi":"","fpage":"1036","id":"b420bc49-4daf-4a89-bdbf-ee1f81349e41","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"bf26e2f6-59c4-4e4b-af49-1b0d21b1c66b","keyword":"硅粉水解","originalKeyword":"硅粉水解"},{"id":"8337bcc6-9f78-4c73-b921-b3f27e94b6f3","keyword":"单分散","originalKeyword":"单分散"},{"id":"68d6e163-5936-44d1-940e-1d94d47a45a5","keyword":"大粒径","originalKeyword":"大粒径"},{"id":"cf7fa060-b3bf-40c3-95ad-0c62cfb43940","keyword":"硅溶胶","originalKeyword":"硅溶胶"}],"language":"zh","publisherId":"gsytb201504027","title":"单分散大粒径硅溶胶的制备","volume":"34","year":"2015"},{"abstractinfo":"本文采用硅粉水解-胶粒整理法制备硅晶片抛光所用硅溶胶,考察了单质硅粉的加入量、反应时间、反应温度、硅溶胶底液浓度、催化剂种类及用量对硅溶胶胶粒平均粒径增长的影响,得到最佳工艺条件:单质硅粉的最佳加入量为25 g、反应时间7h、反应温度80℃、硅溶胶底液的质量浓度为8%、选稀氨水为催化剂、用量为12 mL,在此条件下可制备得到平均粒径为20 nm的硅溶胶产品.经过多次粒子生长可以制备得到适用于硅晶片抛光产业的高纯度大粒径硅溶胶.","authors":[{"authorName":"郑典模","id":"a23d0e0c-fe4d-4c66-af8f-4b7631d0e419","originalAuthorName":"郑典模"},{"authorName":"潘鹤政","id":"56308bff-162b-45ba-8742-9f75e41303f6","originalAuthorName":"潘鹤政"},{"authorName":"屈海宁","id":"c2cc25b4-a945-488b-a1a5-6c8e581225b8","originalAuthorName":"屈海宁"},{"authorName":"陈骏驰","id":"b79675b3-7b79-46a7-9e44-64d7cb87dbcb","originalAuthorName":"陈骏驰"},{"authorName":"彭静红","id":"fea4e000-4213-4da9-9660-4f92f48b5c17","originalAuthorName":"彭静红"}],"doi":"","fpage":"999","id":"3ba5685d-0c8f-4bb2-9fb1-c04f3fbdb4cd","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"255b9faa-d38c-407d-be04-1eaa5a8c1340","keyword":"硅晶片抛光","originalKeyword":"硅晶片抛光"},{"id":"8d64a1cd-e41c-4b4f-b619-363e586fd279","keyword":"高纯度","originalKeyword":"高纯度"},{"id":"218fb0f9-8f7e-47b0-9318-416f8ec6c3e1","keyword":"大粒径","originalKeyword":"大粒径"},{"id":"cfa2e092-4349-457f-855f-debab2f941a3","keyword":"硅溶胶","originalKeyword":"硅溶胶"}],"language":"zh","publisherId":"gsytb201306001","title":"硅晶片抛光用高纯度大粒径硅溶胶的研究","volume":"32","year":"2013"},{"abstractinfo":"目的 验证大粒径(>30μm)SiO2磨粒固结磨具加工蓝宝石晶片的有效性,优化磨具配方,为实现蓝宝石晶片高效、高质量、低成本加工提供有效参考.方法 制作不同配方的氯氧镁结合剂SiO2固结磨具加工蓝宝石,以去除率、表面粗糙度为评价指标,研究磨粒粒度、结合剂比例、磨粒含量对加工效果的影响.结果 6种不同粒径(均>30μm)的SiO2磨粒固结磨具加工蓝宝石,表面粗糙度均有改善,粒径越小,改善效果越好.结合剂中,活性MgO、MgCl2和H2O三者的摩尔比会影响去除率和粗糙度.磨具磨粒的含量高,去除率高,粗糙度小.结论氯氧镁结合剂中,活性MgO:MgCl2:H2O的摩尔比为7:1:16,325#SiO2为磨粒,磨粒质量占结合剂质量的60%,制作磨具加工蓝宝石,转速210 r/min,加载0.4 MPa,加工3 h,去除率为平均17μm/h,表面粗糙度Ra由初始平均345 nm改善至平均9 nm.","authors":[{"authorName":"王洁","id":"9913bd9c-733e-4877-895f-72f9056ea896","originalAuthorName":"王洁"},{"authorName":"袁巨龙","id":"d8927478-e2b9-4ed9-b112-31bc39a2065a","originalAuthorName":"袁巨龙"},{"authorName":"吕冰海","id":"c28353c3-90b1-4e2a-8aff-27af9a548351","originalAuthorName":"吕冰海"},{"authorName":"吕迅","id":"69efba60-bac2-4cd7-ac97-176640a7d42f","originalAuthorName":"吕迅"},{"authorName":"曹霖霖","id":"067e89b3-27d6-4239-af62-b1363fbc4547","originalAuthorName":"曹霖霖"},{"authorName":"彭超飞","id":"fdff0129-46b6-42a8-a30a-52fcedbb1511","originalAuthorName":"彭超飞"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.04.042","fpage":"258","id":"c22ace95-c028-4fdc-beb2-d5a60498502b","issue":"4","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"04c8c7bc-8462-4e8b-bfba-63d13625bdc5","keyword":"SiO2","originalKeyword":"SiO2"},{"id":"e23cd7a8-567f-47cf-aa84-54e287bc42a3","keyword":"氯氧镁结合剂","originalKeyword":"氯氧镁结合剂"},{"id":"e2c21633-3150-4408-b4f1-41c35146fbea","keyword":"固结磨具","originalKeyword":"固结磨具"},{"id":"f82782ae-e84e-4a1c-8e71-2b96739eb7c4","keyword":"大粒径","originalKeyword":"大粒径"},{"id":"0053f4f7-48ca-44b3-84de-4f61b3ea7cff","keyword":"蓝宝石","originalKeyword":"蓝宝石"},{"id":"46a3e0f5-eb13-4b77-a432-da13e7042776","keyword":"固相反应","originalKeyword":"固相反应"}],"language":"zh","publisherId":"bmjs201704042","title":"大粒径SiO2磨粒固结磨具加工蓝宝石试验研究","volume":"46","year":"2017"},{"abstractinfo":"以分散聚合法制得的聚苯乙烯微球为种子,以1,2-二氯乙烷为溶胀剂、己二酸二辛脂(DOA)为助溶胀剂、二乙烯基苯(DVB)为交联剂及甲基丙烯酸(MAA)或丙烯酸(AA)为水溶性功能性单体,采用活性溶胀聚合法成功制得大粒径由羧基修饰的交联聚苯乙烯微球.研究了溶胀剂种类及活性种球粒径对交联聚苯乙烯羧基微球最大平均粒径及粒径分布的影响,并对交联聚苯乙烯羧基微球进行了红外谱图分析及热失重(TGA)分析,结果制得最大粒径为25.0um的交联聚苯乙烯羧基微球,热分解温度为273.8℃.","authors":[{"authorName":"王胜广","id":"1a205dd6-1d2c-4a04-bcc0-30d63069db61","originalAuthorName":"王胜广"},{"authorName":"于洁","id":"9730ed89-0ac5-4d56-a707-58360fa98abd","originalAuthorName":"于洁"},{"authorName":"王琛","id":"d5ec36f3-2ab3-4c27-aeec-f1377c87cda9","originalAuthorName":"王琛"}],"doi":"10.3969/j.issn.1007-4252.2011.01.018","fpage":"107","id":"7aafe1c5-ac91-4edc-91c2-bfa57b29abb8","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"85ae94cb-d427-4f31-ae4a-a8d0a16a54ea","keyword":"大粒径","originalKeyword":"大粒径"},{"id":"6d1cbd47-37bf-47c0-996d-46ddec983f03","keyword":"聚苯乙烯微球","originalKeyword":"聚苯乙烯微球"},{"id":"b9aeac30-5c41-4ea0-944d-6c4c62227e3d","keyword":"活性溶胀聚合","originalKeyword":"活性溶胀聚合"},{"id":"db772590-2331-4c18-b6da-4632b7d52fdf","keyword":"羧基修饰","originalKeyword":"羧基修饰"},{"id":"902f7c17-9108-4862-8a95-98f5f868f094","keyword":"分析","originalKeyword":"分析"}],"language":"zh","publisherId":"gnclyqjxb201101018","title":"大粒径由羧基修饰的交联聚苯乙烯微球的制备与表征","volume":"17","year":"2011"},{"abstractinfo":"采用水作分散介质,聚乙烯基吡咯烷酮(PVP)为保护剂,抗坏血酸作还原剂,较高浓度的氯酸溶液为原料,在弱酸性条件下通过化学还原法制得球状、最大粒径为20 nm的溶胶.考察了还原剂用量、介质pH值、分散剂用量、温度等因素对粒径的影响,并得到制备稳定的纳米溶胶的较优条件:pH=3~5,PVP/HAuCl4=1,抗坏血酸/Au(摩尔比)=3,常温.此方法具备不用搅拌、不返溶、成本低的优点.","authors":[{"authorName":"张聪惠","id":"7376a676-4726-4ad3-8142-adbb3af5800b","originalAuthorName":"张聪惠"},{"authorName":"兰新哲","id":"5fb78c16-c12e-465c-b97a-46a4499d7461","originalAuthorName":"兰新哲"}],"doi":"10.3969/j.issn.0258-7076.2006.04.027","fpage":"549","id":"abf0217a-c0bd-4beb-b0ff-73e386c33885","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"ac2cccf3-6f6c-45d3-9d73-40d9eb262f62","keyword":"纳米","originalKeyword":"纳米"},{"id":"d08a37ad-6f94-499e-8d9e-afd79c0d7bae","keyword":"溶胶","originalKeyword":"溶胶"},{"id":"19b0625b-e687-454a-989a-83470422328f","keyword":"球状","originalKeyword":"球状"},{"id":"1ab6f3c5-57e9-4315-b5a6-b45e68ee17c4","keyword":"超细金粉","originalKeyword":"超细金粉"},{"id":"cabd56fd-81c6-4c92-8ce7-37cb28ed2dca","keyword":"PVP","originalKeyword":"PVP"},{"id":"0b7c91af-54ec-4f20-bc2a-d057bc0620f0","keyword":"抗坏血酸","originalKeyword":"抗坏血酸"}],"language":"zh","publisherId":"xyjs200604027","title":"化学还原法制备纳米溶胶方法研究","volume":"30","year":"2006"},{"abstractinfo":"综述了的分离和富集方法,主要包括各种吸附和萃取方法.采用活性炭和泡沫塑料(简称泡塑)吸附分离是传统的分离富集法,有负载活性炭和有负载泡塑可以提高富集的能力.近些年,离子交换树脂和离子交换纤维素在分离富集的应用中,占有相当大的比例.萃取法除了使用传统的MIBK作为萃取剂,又见报道硫醚、亚砜、醇类等作为萃取剂的各种萃取体系.文中引用参考文献107篇.","authors":[{"authorName":"冯月斌","id":"abd62fc7-3872-4461-8d32-6c90e9372e43","originalAuthorName":"冯月斌"},{"authorName":"张锦柱","id":"0bce5201-7889-4749-8883-5693ec2ee81e","originalAuthorName":"张锦柱"}],"doi":"10.3969/j.issn.1001-1277.2003.07.014","fpage":"43","id":"173127e6-9d27-442f-8424-d35c5570e25b","issue":"7","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"45cf7c43-dbbf-4338-838d-efda573d860e","keyword":"","originalKeyword":"金"},{"id":"27e150c8-2163-4424-ac6a-e0b570c5cfb7","keyword":"分离富集","originalKeyword":"分离富集"},{"id":"fc4fe01c-a40d-435f-b67c-80eae942c9be","keyword":"吸附","originalKeyword":"吸附"},{"id":"7bde1e14-8fc6-4035-92f7-c5a6ddf12d82","keyword":"萃取","originalKeyword":"萃取"}],"language":"zh","publisherId":"huangj200307014","title":"的分离富集","volume":"24","year":"2003"},{"abstractinfo":"称取一定量的载炭进行火试配料,经过熔炼、灰吹得到金银合粒,使用硝酸分金得到粒,再通过计算得到载炭中银含量,从而建立了火试重量法测定载炭中银含量的方法.经过试验,确定了火试配料中试样量、氧化铅加入量、灰吹温度等最佳试验条件.根据目前国内载炭的生产水平,在载炭国家标准物质加入一定量的共存元素,进行了银量测定的干扰试验,结果表明载炭中共存元素(Cu、Fe、Pb、Cd、Zn、Bi、Cr、Ca、Mg、As)对银测定无影响.将方法用于3个载炭国家标准物质中银的测定,测定值与认定值基本吻合,相对标准偏差(RSD,n=11)为0.82%~4.2%.","authors":[{"authorName":"夏珍珠","id":"ae2def66-61f8-4a33-8789-5dec712b132d","originalAuthorName":"夏珍珠"}],"doi":"10.13228/j.boyuan.issn1000-7571.010052","fpage":"54","id":"4b8246f5-46d3-4c21-add1-aec3ad1a51f6","issue":"2","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"47d546ce-8dc2-4590-a95d-577be2bda394","keyword":"载炭","originalKeyword":"载金炭"},{"id":"d39a523e-9fce-4000-9dc3-679e231f7a0a","keyword":"银","originalKeyword":"银"},{"id":"4fe9ac55-04a7-4da9-9b38-d814d71ea793","keyword":"火试","originalKeyword":"火试金"}],"language":"zh","publisherId":"yjfx201702011","title":"火试重量法测定载炭中银","volume":"37","year":"2017"}],"totalpage":267,"totalrecord":2663}