{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了进一步研究钛材表面TiO2微弧氧化生长过程生长模式,采用物理分析技术分析了其微弧氧化过程中不同放电阶段表面形貌、层厚度、相成分、表面粗糙度硬度变化.结果表明:TiO2多孔最初以孤立岛状生长模式生长,随微弧氧化反应进行,孤立岛状氧化彼此相连接,表面形貌厚度逐渐趋于一致,氧化孔径、厚度、粗糙度硬度均有增加;相成分由亚稳锐钛矿向高温下更加稳定金红石转变,羟基磷灰石(HA)量逐渐增加;TiO2所呈现特性与微弧氧化过程中不同阶段放电特性密切相关.","authors":[{"authorName":"刘世敏","id":"7c2e86a9-e815-45fa-867a-969db92723b9","originalAuthorName":"刘世敏"},{"authorName":"李宝娥","id":"cef0d854-69f4-4aa2-90eb-e95bc11426a6","originalAuthorName":"李宝娥"},{"authorName":"乔志霞","id":"31b5ec3b-1e95-4d57-a371-b2eca55b94e4","originalAuthorName":"乔志霞"}],"doi":"","fpage":"6","id":"087975be-532a-4776-a228-2c4e59ae6bdd","issue":"1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"094a44d6-69c6-46a7-b8c4-c164e03f0a7d","keyword":"TiO2微孤氧化","originalKeyword":"TiO2微孤氧化膜"},{"id":"5154b7a8-0e1c-43bc-b876-d56e278ed54c","keyword":"钛材","originalKeyword":"钛材"},{"id":"c1746e94-1649-4162-968c-bb84caa8c7fc","keyword":"生长模式过程","originalKeyword":"膜的生长模式和过程"},{"id":"db4f50df-b8ca-4f9b-960e-165e9ca3b3c0","keyword":"特性","originalKeyword":"膜的特性"}],"language":"zh","publisherId":"clbh201601002","title":"TiO2微弧氧化生长过程及特性变化","volume":"49","year":"2016"},{"abstractinfo":"采用直流反应磁控溅射法,在Si(100)基片表面沉积厚度为1000 nm二氧化钒.利用X射线衍射(XRD)仪和扫描电镜(SEM)分析晶相形貌,观察到二氧化钒一种新生长模式.X射线衍射分析表明生成为典型多晶二氧化钒,其(200)晶面衍射峰较强.扫描电镜(SEM)分析表明,随着增加,表面晶粒增大,表面晶粒呈现出独特\"纺锤\"状或\"棒\"状;具有明显 \"柱\"状生长特征,在厚380 nm以上时,\"柱状\"晶生长速率快速提高.样品阻温特性分析表明,生成二氧化钒具有典型金属-半导体相变特征.","authors":[{"authorName":"魏雄邦","id":"6babb8b4-2189-4356-afa6-3c42a96c76f5","originalAuthorName":"魏雄邦"},{"authorName":"蒋亚东","id":"a5bef547-2608-4aae-997f-660e53193b86","originalAuthorName":"蒋亚东"},{"authorName":"吴志明","id":"387a5f73-79e3-46fe-b4f1-2d442292213a","originalAuthorName":"吴志明"},{"authorName":"廖家轩","id":"d3e6bcdd-3390-4669-9124-7f5e2b5f5ab0","originalAuthorName":"廖家轩"},{"authorName":"贾宇明","id":"fec734e7-e4e9-4732-9738-f2530a6067ce","originalAuthorName":"贾宇明"},{"authorName":"田忠","id":"11ebfad8-0ce7-4b5d-b65b-99ed95d8b4e0","originalAuthorName":"田忠"}],"doi":"","fpage":"289","id":"bfe10d6d-bb97-4ba4-a1d3-14743a556901","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"81b220f7-e4a1-4722-b9d7-f07e05405f6a","keyword":"二氧化钒","originalKeyword":"二氧化钒膜"},{"id":"933b68a6-77a5-478a-9c11-fdebb2fed619","keyword":"厚","originalKeyword":"膜厚"},{"id":"2fbdf03c-85c2-478d-9e2a-d2f2ca7bd080","keyword":"直流磁控溅射","originalKeyword":"直流磁控溅射"}],"language":"zh","publisherId":"xyjsclygc2010z1070","title":"一种二氧化钒生长模式","volume":"39","year":"2010"},{"abstractinfo":"采用直流热阴极PCVD( Plasma chemical vapor deposition)法间歇生长模式制备金刚石,通过加入周期性刻蚀阶段清除金刚石在一定生长期中形成石墨非晶碳等杂质,实现了金刚石生长质量调控.间歇式生长过程分为沉积阶段刻蚀阶段,两个阶段交替进行.采用Raman光谱、SEMXRD对所制金刚石品质进行了表征,并与同样生长条件下连续生长模式制备金刚石样品进行了比较.结果表明,当单个生长周期为30m in(沉积时间为20 min、刻蚀时间为10min)时,直流热阴极PCVD法间歇生长模式制备金刚石非金刚石相杂质含量低于连续间歇生长模式制备金刚石.","authors":[{"authorName":"姜宏伟","id":"04232a4f-5543-49b2-a69d-92201b43ed9c","originalAuthorName":"姜宏伟"},{"authorName":"黄海亮","id":"2633b5ee-21a6-490a-bc25-14b7bc429e19","originalAuthorName":"黄海亮"},{"authorName":"贾相华","id":"b7d1ae0a-cd82-44c5-a8d7-30a01480f48a","originalAuthorName":"贾相华"},{"authorName":"尹龙承","id":"0bd6bb80-e4bb-4f97-be2d-2a9981490a2b","originalAuthorName":"尹龙承"},{"authorName":"陈玉强","id":"7f79aebd-880f-4f6f-8acf-974f7587e6b8","originalAuthorName":"陈玉强"},{"authorName":"彭鸿雁","id":"3e2f5922-f7b3-49ba-913d-16aa61de3efb","originalAuthorName":"彭鸿雁"}],"doi":"","fpage":"307","id":"6e725bbd-a828-45a3-adb1-61c045a6eda5","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"659b8046-5657-406c-bf0a-4f16d5d101ae","keyword":"直流热阴极","originalKeyword":"直流热阴极"},{"id":"299381bf-4dbe-4078-960c-44c9782815c8","keyword":"CVD","originalKeyword":"CVD"},{"id":"88e9ec76-1850-4c35-8061-b24693a1d2d4","keyword":"间歇生长模式","originalKeyword":"间歇生长模式"},{"id":"354c7305-1b0d-4ea6-b45e-416484f2d765","keyword":"金刚石","originalKeyword":"金刚石膜"}],"language":"zh","publisherId":"xxtcl201204011","title":"直流热阴极PCVD法间歇生长模式制备金刚石","volume":"27","year":"2012"},{"abstractinfo":"利用金属在磷化液中腐蚀电流或腐蚀电压变化研究磷化生长过程磷化完成时间是一种简单、快速方便方法.用这种方法不仅能很容易地分析金属件在各种磷化液中全部变化行为,而且可以很方便地确定最佳操作时间.","authors":[{"authorName":"周谟银","id":"cac120fb-0d0e-4514-bc28-8b2bb84d134a","originalAuthorName":"周谟银"}],"categoryName":"|","doi":"","fpage":"341","id":"4bdc4342-6b70-4102-b4c1-a5dbaf7b7fdd","issue":"4","journal":{"abbrevTitle":"FSKXYFHJS","coverImgSrc":"journal/img/cover/FSKXYFHJS.jpg","id":"24","issnPpub":"1002-6495","publisherId":"FSKXYFHJS","title":"腐蚀科学与防护技术"},"keywords":[{"id":"4335a14a-ef5d-49cd-8324-ffdb7c86e6e2","keyword":"电压","originalKeyword":"电压"},{"id":"bd38830a-73e5-4829-9855-32db5d8cc591","keyword":"null","originalKeyword":"null"},{"id":"c67a61ce-79c6-4c6f-bb17-a4c456ae9bbd","keyword":"null","originalKeyword":"null"},{"id":"55c20043-6fd9-4dea-b506-66853977527d","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_1995_4_4","title":"利用电流电压变化研究磷化生长过程","volume":"7","year":"1995"},{"abstractinfo":"以磷酸盐化学转化为研究体系,采用SEM、XRD、OCP等分析方法及检测手段,研究AZ91D镁合金系磷酸盐化学转化机理、层结构及生长过程.研究发现AZ91D镁合金在磷化液中成过程分5个阶段:初始成核(1~5s)、基体快速溶解(5~60s)、晶体快速生长(1~2min)、层稳态生长(2~10min)层沉积溶解平衡阶段(10min以后).AZ91D镁合金表面磷酸盐晶核形成并非在金属进入溶液最初时刻一次形成,是分批形成.最先形成晶核逐渐长大,新晶核不断生成,磷酸盐晶粒对其表面覆盖度逐渐增大,直至各个晶粒逐渐长大相互接界,将其表面完全覆盖,结晶过程结束.晶核形成未优先发生在基体金属晶界上,随着晶核生长外延而形成磷化.","authors":[{"authorName":"胡伟","id":"3154e47b-2265-47c4-8842-a5e92ff11116","originalAuthorName":"胡伟"},{"authorName":"徐淑强","id":"c92b09f4-44e3-4dbf-a30a-507a1d9a5275","originalAuthorName":"徐淑强"},{"authorName":"李青","id":"f2f53775-d955-46ec-893f-082e5bd4acc2","originalAuthorName":"李青"}],"doi":"","fpage":"260","id":"91875474-c311-4530-82da-fe65c1716985","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"0f43b205-530a-4be5-bb56-8f486ea159b2","keyword":"AZ91D镁合金","originalKeyword":"AZ91D镁合金"},{"id":"11d83c38-28bc-4678-9e85-612941fcbee4","keyword":"磷化","originalKeyword":"磷化膜"},{"id":"8355735d-d97b-4f2a-b7ae-8eaff749e8fa","keyword":"成机理","originalKeyword":"成膜机理"},{"id":"78c834d9-3a65-4fb4-8601-f8dd6089db1c","keyword":"电化学测试","originalKeyword":"电化学测试"}],"language":"zh","publisherId":"gncl201002023","title":"AZ91D镁合金锌系磷化机理生长过程研究","volume":"41","year":"2010"},{"abstractinfo":"为明确溅射偏压对ITO薄膜性质影响,用射频磁控溅射法于室温在玻璃衬底制备出ITO透明导电薄膜,研究了不同偏压下ITO薄膜生长模式、光学电学性能.结果表明:随着偏压增加,薄膜沉积模式经历了沉积、沉积扩散、表面脱附3种方式;AFMSEM显示,偏压为100 V时,层表面光洁、均匀,粗糙度最小,均方根粗糙度为1.61 nm;XRD分析表明偏压会影响与薄膜择优取向,偏压为100 V时,薄膜晶粒取向为(222)面;薄膜偏压为120 V时,薄膜光电性能最佳,电阻率最低为2.59×10-4Ω.cm,可见光区平均透过率在85%以上;偏压大小使薄膜吸收边发生了"蓝移"或"红移".","authors":[{"authorName":"马瑞新","id":"9bd73bbf-2061-4cea-b768-ab8bfceb2e73","originalAuthorName":"马瑞新"},{"authorName":"李士娜","id":"637ffca6-9b58-4375-bda9-6d83e50985de","originalAuthorName":"李士娜"},{"authorName":"锁国权","id":"add9f03d-7c6e-4b74-bb5a-daf9fd409a38","originalAuthorName":"锁国权"},{"authorName":"任磊","id":"92f1566f-962e-4a0e-8447-5325b2b31a01","originalAuthorName":"任磊"}],"doi":"","fpage":"65","id":"070148b2-267d-4f9d-b2d3-c29b8f30dc8b","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"01f26645-dfb9-4d07-a307-b17f1eb8ea12","keyword":"ITO薄膜","originalKeyword":"ITO薄膜"},{"id":"5403e79c-0a50-4588-9b1a-f2c523a1f6ed","keyword":"偏压","originalKeyword":"偏压"},{"id":"6ba22a4f-fb99-468d-aefa-338ad24e3419","keyword":"生长模式","originalKeyword":"生长模式"},{"id":"bece0d6b-4fa6-4bf8-b241-990bb2a53e13","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"de6280c5-8301-40cd-b7c4-b2af8a48b835","keyword":"光电性能","originalKeyword":"光电性能"}],"language":"zh","publisherId":"clkxygy201204012","title":"偏压对ITO薄膜生长模式光电性能影响","volume":"20","year":"2012"},{"abstractinfo":"对有机/无机光电探测器PTCDA/p-Si样品表面进行得AFM扫描看出,PTCDA呈岛状生长,各岛成圆丘状,岛分布不均匀,PTCDA层中存在大量缺陷.原因是p-Si(100)衬底表面原子悬挂键作用,使硅原子横向移动满足键合需要形成台阶其它缺陷引起.将样品表面XPS全谱及精细谱与表面AFM扫描图进行对比分析,得出PTCDA在p-Si基底上生长模式,即:PTCDA首先在缺陷处聚集,形成许多三维岛状PTCDA晶核,然后在PTCDA离域大π键作用下,相邻两层PTCDA分子存在一定程度交叠,最终形成岛状结构.与硅衬底原子结合过程为:苝环与缺陷处Si原子结合,而酸酐基团与表面完整处Si结合.结合时,苝环结构保持不变,而酸酐基团与Si发生化学反应,使酸酐中CO键断开,形成SiCO硅氧化物.对PTCDA/p-Si样品界面XPS全扫描谱精细图谱进行分析后,进一步验证了PTCDA在p-Si基底上生长模式.","authors":[{"authorName":"宋珍","id":"5db96fe8-68d0-48cf-94ce-e71c30929f26","originalAuthorName":"宋珍"},{"authorName":"刘凤敏","id":"1eafb4dc-96aa-4495-aea3-6b526da01e6b","originalAuthorName":"刘凤敏"},{"authorName":"欧谷平","id":"d488b735-fd49-4880-a924-de904d89d4bf","originalAuthorName":"欧谷平"},{"authorName":"甘润今","id":"7ada4d0a-77b3-45c8-887f-cf59c8a92b1e","originalAuthorName":"甘润今"},{"authorName":"张福甲","id":"96ee2174-4047-4051-a10b-7b2ff52a1098","originalAuthorName":"张福甲"}],"doi":"","fpage":"1041","id":"4b88385d-5223-4253-8223-e94acdd76bef","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"03d36b57-7c5d-42e3-9c82-5b4a5116680e","keyword":"PTCDA","originalKeyword":"PTCDA"},{"id":"2dafd772-9edf-4bef-80e2-d0267ae9ff1d","keyword":"生长模式","originalKeyword":"生长模式"},{"id":"c5349699-81e7-48c2-9616-2e5c95bd33e7","keyword":"AFM","originalKeyword":"AFM"},{"id":"a0f9a75b-7986-4cb7-98ba-de54d1a0a3c4","keyword":"XPS","originalKeyword":"XPS"}],"language":"zh","publisherId":"gncl200507021","title":"p-Si基PTCDA生长模式AFMXPS研究","volume":"36","year":"2005"},{"abstractinfo":"运用电化学交流阻抗分析(EIS)、电量测定并结合原子力显微镜(AFM)研究了\n304不锈钢载波钝化生长过程. 研究了在交变电场下钝化层中微孔\n产生及其对生长作用; 并运用钝化生长过程电量--时间响应和\n原子力显微镜扫描分析对不锈钢载波钝化生长机理进行验证分析. 结果\n表明: 载波钝化具有很高生长速度是由于交变电场对作用改变了\n生长方式, 使之不同于直流钝化条件下钝化生长过程.","authors":[{"authorName":"张俊喜","id":"fea66eb9-7547-48c5-8624-4fdea4d9aa96","originalAuthorName":"张俊喜"},{"authorName":"颜立成","id":"cc5da707-93c4-4c09-82dd-475e426855ca","originalAuthorName":"颜立成"},{"authorName":"魏增福","id":"64b8b6a2-e3ba-4cf7-880e-13332313ed62","originalAuthorName":"魏增福"},{"authorName":"乔亦男","id":"d969728e-01bd-475f-9a94-8624635d61c0","originalAuthorName":"乔亦男"},{"authorName":"曹楚南","id":"8837c3f3-5e5d-4032-804f-8e64886c6639","originalAuthorName":"曹楚南"},{"authorName":"张鉴清","id":"dfb95f14-2ad8-4b23-b67b-b9eed107ef4d","originalAuthorName":"张鉴清"}],"categoryName":"|","doi":"","fpage":"404","id":"fcdbf56f-7828-4da8-9cc9-3943bd61a6a2","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"601c5990-51d3-436b-9f04-4223364c7b4b","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"62490ac6-3339-4d46-b55a-f033e32e891b","keyword":"alternating voltage passivation","originalKeyword":"alternating voltage passivation"},{"id":"a8870ac8-de3d-42ed-ad73-f633295e98c3","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2004_4_14","title":"不锈钢载波钝化生长过程","volume":"40","year":"2004"},{"abstractinfo":"运用电化学交流阻抗分析(EIS)、电量测定并结合原子力显微镜(AFM)研究了304不锈钢载波钝化生长过程.研究了在交变电场下钝化层中微孔产生及其对生长作用;并运用钝化生长过程电量时间响应和原子力显微镜扫描分析对不锈钢载波钝化生长机理进行验证分析.结果表明:载波钝化具有很高生长速度是由于交变电场对作用改变了生长方式,使之不同于直流钝化条件下钝化生长过程.","authors":[{"authorName":"张俊喜","id":"79c13fcb-64a9-4c47-8a80-067e55b2eaae","originalAuthorName":"张俊喜"},{"authorName":"颜立成","id":"1a245a58-1973-45c0-82b5-0db3e2fc02be","originalAuthorName":"颜立成"},{"authorName":"魏增福","id":"3a10caf3-3a5e-4fea-8d2d-fc61b01fa908","originalAuthorName":"魏增福"},{"authorName":"乔亦男","id":"cbf8dd63-8587-48bb-8a5d-fce8525a0c5f","originalAuthorName":"乔亦男"},{"authorName":"曹楚南","id":"f75aa8f9-d4ad-41af-98e3-9cb922b2bf48","originalAuthorName":"曹楚南"},{"authorName":"张鉴清","id":"588c4a09-1d72-400d-8e06-66b3755e6423","originalAuthorName":"张鉴清"}],"doi":"10.3321/j.issn:0412-1961.2004.04.015","fpage":"404","id":"d496e1b3-f709-4774-b5a1-b89a6bcf0e18","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"288e1b62-f75d-498e-83c8-70c09b75045a","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"f0a9c295-3a7c-49a1-9602-7c2424777e8c","keyword":"载波钝化","originalKeyword":"载波钝化"},{"id":"11368341-a015-4b25-a15c-a64919945dcf","keyword":"生长机理","originalKeyword":"生长机理"},{"id":"21f81402-257a-4f77-ac3c-1c74bd3d8ab9","keyword":"成孔率","originalKeyword":"成孔率"}],"language":"zh","publisherId":"jsxb200404015","title":"不锈钢载波钝化生长过程","volume":"40","year":"2004"},{"abstractinfo":"采用直流热阴极PCVD技术,经过生长温度周期性调整,达到清除多余游离碳刻蚀非金刚石相,实现了在高甲烷浓度条件下制备纳米金刚石.金刚石生长过程分为沉积阶段刻蚀去除阶段,沉积时间为15min,刻蚀时间为5min,生长周期为20min,总沉积时间为6h.采用拉曼光谱仪、SEMXRD分析仪对样品进行了分析,结果显示样品具有纳米金刚石基本特征.研究表明,在高甲烷浓度条件下,直流热阴极PCVD间歇生长模式可有效去除生长腔内游离碳成分,实现正常放电激励,维持正常生长,制备出纳米金刚石.","authors":[{"authorName":"姜宏伟","id":"5e8b7087-0df9-4ab4-a8e0-1a644b546fe0","originalAuthorName":"姜宏伟"},{"authorName":"彭鸿雁","id":"2ad69bda-8397-43a5-b4bf-10b26063e310","originalAuthorName":"彭鸿雁"},{"authorName":"陈玉强","id":"830c8601-c9e5-4ae1-b52a-2556e0147b31","originalAuthorName":"陈玉强"},{"authorName":"祁文涛","id":"28ef5e18-2b98-4332-aeac-ba2687c7ee49","originalAuthorName":"祁文涛"},{"authorName":"王军","id":"90361050-bcbd-4f0c-9399-9f124ca73885","originalAuthorName":"王军"},{"authorName":"曲晏宏","id":"ce2526e9-daf1-4b5e-9329-afae00b96a76","originalAuthorName":"曲晏宏"}],"doi":"","fpage":"67","id":"b0887d0e-dc64-4d11-93d8-f87731cab181","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"dab8a0a8-2726-436f-882e-62398d531e0e","keyword":"直流热阴极PCVD","originalKeyword":"直流热阴极PCVD"},{"id":"79979c0a-c3e1-435d-ba7c-f297225c99f8","keyword":"高甲烷浓度","originalKeyword":"高甲烷浓度"},{"id":"c44b2bd7-f6f2-4752-b31a-4e5c203e8c73","keyword":"纳米金刚石","originalKeyword":"纳米金刚石膜"},{"id":"6c586f0c-68a3-4493-9e81-ae43f70f7e4b","keyword":"间歇式","originalKeyword":"间歇式"}],"language":"zh","publisherId":"cldb2010z1021","title":"间歇生长模式高甲烷浓度制备纳米金刚石","volume":"24","year":"2010"}],"totalpage":21662,"totalrecord":216619}