{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"聚合物基导电复合材料的室温逾渗机理是其使用和制备的重要基础.为了阐述聚乙烯/碳纳米管导电复合材料的室温逾渗性能,文中基于交流阻抗的分析思路和方法,采用电阻电容的等效电路模拟复合材料中的电学性能.以熔融法制备的高密度聚乙烯(HDPE)/碳纳米管(CNTs)复合材料为研究对象,测试其室温下的电学性能与CNTs含量间的关系,其中交流(AC)阻抗测试频率范围为100 Hz到106.5 Hz.当碳纳米管质量分数为0.5%时复合材料的电导率升至10-6 S/cm,表明复合材料中逾渗网络已初步形成.随频率变化的AC阻抗可清晰地展示HDPE/CNTs中导电网络的形成过程,并表明在导电复合材料的电学逾渗中,复合材料的导电机理逐渐由电容主导向电阻主导变化.","authors":[{"authorName":"张荣","id":"cb998d34-6777-45c4-a9ea-3d21f5b34753","originalAuthorName":"张荣"},{"authorName":"宾月珍","id":"0ac60653-5e3a-496a-9857-662486c76470","originalAuthorName":"宾月珍"},{"authorName":"唐萍","id":"28c6c8e1-e076-4228-8ff2-b8246714696d","originalAuthorName":"唐萍"},{"authorName":"魏文闵","id":"a04e5f8f-7f53-4286-a384-985d0b74659e","originalAuthorName":"魏文闵"},{"authorName":"倪娜","id":"26870c7e-63d9-4099-9d47-3667afeb8309","originalAuthorName":"倪娜"},{"authorName":"孙权","id":"471f1eb3-c3d7-47d3-826c-1fb3afc16b8c","originalAuthorName":"孙权"},{"authorName":"刘清亭","id":"03c9a57a-7c28-41ac-bb19-9ff033b21535","originalAuthorName":"刘清亭"},{"authorName":"胡圣飞","id":"ed6db968-9596-4dc3-80df-5119178a5004","originalAuthorName":"胡圣飞"}],"doi":"10.16865/j.cnki.1000-7555.2016.11.009","fpage":"41","id":"b7c2babf-5608-49e9-a201-db768c2f0d04","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9f5fc33e-7645-4457-a4d9-c6e5de3df5fe","keyword":"导电复合材料","originalKeyword":"导电复合材料"},{"id":"be476199-a8e1-4a4b-b9ff-9d3ef64f3886","keyword":"交流阻抗","originalKeyword":"交流阻抗"},{"id":"cb803ec1-24d9-46a0-bc1e-17d8749cd751","keyword":"逾渗性能","originalKeyword":"逾渗性能"},{"id":"9863feee-dacd-44de-bbe0-96f7ae584451","keyword":"等效电路","originalKeyword":"等效电路"}],"language":"zh","publisherId":"gfzclkxygc201611009","title":"基于交流阻抗的聚乙烯/碳纳米管导电复合材料的室温逾渗性能","volume":"32","year":"2016"},{"abstractinfo":"采用原位合成的方法制备了聚2,5-苯并咪唑(ABPBI)/八氨基笼状倍半硅氧烷(AM-POSS)复合膜材料,并对其化学结构、表面形貌、热稳定性、力学性能、磷酸吸收性能及质子传导性能进行了表征和测试.结果分析认为,与纯ABPBI膜比较,ABPBI/AM-POSS复合膜基体因独特的“八爪鱼”结构而提高了复合膜的热稳定性能和力学强度;AM-POSS粒子的添加还显著提高复合膜的磷酸吸收能力,进而提高了复合膜的质子传导率;ABPBI/3% AM-POSS复合膜在磷酸掺杂水平达到252%时在80~140℃较宽温度范围内质子传导率超过0.1S/cm;表明AM-POSS改性的ABPBI复合膜具备应用于宽温域质子交换膜燃料电池前景.","authors":[{"authorName":"孙权","id":"9a4ec714-f670-4e6b-836d-6081f6dbf00b","originalAuthorName":"孙权"},{"authorName":"倪娜","id":"d2d06e75-461f-49d9-a35e-14f20b9a53a5","originalAuthorName":"倪娜"},{"authorName":"俞李帅","id":"563f74bd-d3fb-41df-948f-808f8228fd90","originalAuthorName":"俞李帅"},{"authorName":"张肖肖","id":"c934455c-b613-4625-b239-410df49cf853","originalAuthorName":"张肖肖"},{"authorName":"刘清亭","id":"42a97cae-31d8-4973-a2df-012adcbd6640","originalAuthorName":"刘清亭"},{"authorName":"张荣","id":"260b329d-cbd1-4597-a0be-cc5f6bb1c48e","originalAuthorName":"张荣"},{"authorName":"胡圣飞","id":"c5454a4e-6eca-4df6-8104-8e9ca8afad5b","originalAuthorName":"胡圣飞"},{"authorName":"赵锋","id":"48052ba2-9d6a-4755-9961-caf4f6ae58b7","originalAuthorName":"赵锋"},{"authorName":"李骁","id":"17ad9f17-e688-4606-b890-4327f75a6509","originalAuthorName":"李骁"}],"doi":"10.16865/j.cnki.1000-7555.2016.12.004","fpage":"20","id":"fcfa7c8b-b924-4779-82dc-14c163bf503a","issue":"12","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"c378e584-ed5c-422a-8804-3c0fc61e72eb","keyword":"聚2,5-苯并咪唑","originalKeyword":"聚2,5-苯并咪唑"},{"id":"de40a930-23ca-4f96-9b16-9e66aa3b5341","keyword":"八氨基笼状倍半硅氧烷","originalKeyword":"八氨基笼状倍半硅氧烷"},{"id":"585f0a23-ac21-43b2-beef-f002c9eeb947","keyword":"原位合成","originalKeyword":"原位合成"},{"id":"31be42fc-86f4-4dee-9d19-4b288b1379f5","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"6e3c3d7a-50f6-4bff-aa82-d3d388ed7e46","keyword":"导电率","originalKeyword":"导电率"}],"language":"zh","publisherId":"gfzclkxygc201612004","title":"聚苯并咪唑基/八氨基笼状倍半硅氧烷复合电解质膜的制备与性能","volume":"32","year":"2016"},{"abstractinfo":"柔性可穿戴电子器件的研制是未来科技发展的方向之一,柔性导电材料是可穿戴电子器件的重要支撑材料.由于聚合物具有优异的柔性,由聚合物基导电复合材料制备柔性导体是一种重要的途径和方式.文中从制备和表征方法方面归纳了聚合物基柔性导电复合材料的研究进展,重点阐述了实现柔性导体的关键因素,即聚合物优异高弹性的保持和可拉伸的稳定的导电网络的实现,详细介绍了简易地利用高弹性基体和纳米填料的直接共混法和目前应用较多的结构可拉伸导体的设计与制备,并总结了目前研究中存在的问题.","authors":[{"authorName":"张荣","id":"16d548d3-ee63-4119-a542-7c1d966fb0bc","originalAuthorName":"张荣"},{"authorName":"徐成成","id":"a6173600-eea7-4235-a9dd-03925761eaac","originalAuthorName":"徐成成"},{"authorName":"魏文闵","id":"923317c1-23af-427e-9c10-11ad04b5339e","originalAuthorName":"魏文闵"},{"authorName":"张帆","id":"e069a434-3bea-4419-be5b-5d6b45f40ad7","originalAuthorName":"张帆"},{"authorName":"黄轲","id":"7afe40e5-1419-4050-98ef-206e0531b2f8","originalAuthorName":"黄轲"},{"authorName":"胡圣飞","id":"9eef6090-3ecf-4491-8190-dc89df8ad541","originalAuthorName":"胡圣飞"},{"authorName":"刘清亭","id":"2f10cb69-e31e-46ec-ad17-695d571ccbdd","originalAuthorName":"刘清亭"}],"doi":"10.16865/j.cnki.1000-7555.2017.02.033","fpage":"177","id":"55137c68-56d4-43c9-ad9c-1c8713974036","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"f28b1950-f6dc-4b08-8ba5-c18b80b87642","keyword":"柔性导体","originalKeyword":"柔性导体"},{"id":"32312d46-981e-439c-a191-3ff377018e90","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"d40a3a07-a75e-425f-8774-fddc54a8faac","keyword":"导电复合材料","originalKeyword":"导电复合材料"}],"language":"zh","publisherId":"gfzclkxygc201702033","title":"聚合物基柔性导电复合材料的制备和研究进展","volume":"33","year":"2017"},{"abstractinfo":"利用旋转流变仪、单螺杆挤机、扫描电镜等考察了高熔体强度聚丙烯(HMSPP)流变性能,研究了温度及机头压力对泡孔形态的影响.结果表明,通过接枝交联可以制备HMSPP;在冷却过程中,梯度温度分布导致泡孔尺寸沿棒材中心到边缘呈梯度分布;机头压力对泡孔形态影响较大,当机头压力从9.6 MPa上升到13.6 MPa时,泡孔密度从9.46×105cm-3上升到1.11×108 cm-3,泡孔直径从91 μm下降到29μm,当机头压力从11.9 MPa下降到7.1 MPa时,泡孔密度从2.35× 107 cm-3降低到5.15×106 cm-3,泡孔直径从51 μm升高到123 μm.此外,较低的机头压力导致泡孔呈双峰分布.","authors":[{"authorName":"胡圣飞","id":"bef9c72b-2935-4b62-90e5-373e702f66d2","originalAuthorName":"胡圣飞"},{"authorName":"朱贤兵","id":"577d9302-7f1d-4caf-9d1a-088eddb47505","originalAuthorName":"朱贤兵"},{"authorName":"刘清亭","id":"7dedabb5-d5af-48d1-b1dc-da95d9826fc1","originalAuthorName":"刘清亭"},{"authorName":"胡伟","id":"86bd2f61-47ca-4bb8-9f2b-c8e030133a38","originalAuthorName":"胡伟"},{"authorName":"蔡畅","id":"a0ee35ac-4576-458b-bd41-1682ffa4443e","originalAuthorName":"蔡畅"},{"authorName":"晏翎","id":"f3cb3d9b-328a-4ccf-934a-69743d2200a6","originalAuthorName":"晏翎"}],"doi":"","fpage":"90","id":"073fd9af-9dad-4ba1-9308-dc595d338896","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"065b355f-a2ef-4768-90c1-054e700d1297","keyword":"高熔体强度聚丙烯","originalKeyword":"高熔体强度聚丙烯"},{"id":"c20aa0c4-f926-4888-9248-ba94319f49b3","keyword":"挤出发泡","originalKeyword":"挤出发泡"},{"id":"21b2ce86-f22e-4dbf-a426-0cb65ae1c3fc","keyword":"泡孔形态","originalKeyword":"泡孔形态"},{"id":"c37dae73-eb20-4610-b78d-3db959157749","keyword":"梯度分布","originalKeyword":"梯度分布"}],"language":"zh","publisherId":"gfzclkxygc201404019","title":"聚丙烯挤出发泡材料的泡孔结构","volume":"30","year":"2014"},{"abstractinfo":"研究了低密度聚乙烯(LDPE)/乙烯-醋酸乙烯酯(EVA)/发黑(CB)导电发泡材料在压力作用下的导电行为.结果表明,LDPE/EVA/CB导电泡沫材料的渗滤阈值为21.6%.炭黑质量分数在20% ~23%范围内,材料的导电性能与泡孔结构最佳.在压缩实验中,材料表现电阻负压力系数效应(NPCR)与电阻正压力系数效应(PPCR).在定应变循环压缩实验中,压缩频率f=0.01 Hz比f=0.25 Hz的电阻变化更稳定,说明高频压缩易对导电网络造成破坏.每周期的电阻曲线均呈“w”型,说明NPCR向PPCR转变的行为可逆,该变化被认为与基体的压缩与泡孔壁的拉伸变形有关,由此提出导电泡沫材料压-阻特性模型.","authors":[{"authorName":"晏翎","id":"3a97736e-6bef-4fa2-b2f5-e066c3e48f1a","originalAuthorName":"晏翎"},{"authorName":"刘清亭","id":"147a11ac-c67e-470e-8420-f684d3d7fccd","originalAuthorName":"刘清亭"},{"authorName":"胡圣飞","id":"6be42a12-ab5f-4d09-97f8-05c62479639b","originalAuthorName":"胡圣飞"},{"authorName":"杨敏","id":"01e7799a-ac74-4f3e-b04d-5a19f9639ba8","originalAuthorName":"杨敏"}],"doi":"","fpage":"76","id":"08cb1b8c-fd1a-4294-80dd-25bfe3a03575","issue":"12","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"f2a07837-679d-472c-b310-13327855c5c6","keyword":"低密度聚乙烯/乙烯-醋酸乙烯酯/炭黑发泡材料","originalKeyword":"低密度聚乙烯/乙烯-醋酸乙烯酯/炭黑发泡材料"},{"id":"2cead6b6-123e-45dc-8406-72c0d0cc73ce","keyword":"压阻特性","originalKeyword":"压阻特性"},{"id":"8be87e82-3c4a-48d7-b91a-e7aa649b56b4","keyword":"循环压缩","originalKeyword":"循环压缩"},{"id":"2e5a1621-e60b-411e-a217-ef8d18bd38a5","keyword":"导电模型","originalKeyword":"导电模型"}],"language":"zh","publisherId":"gfzclkxygc201412016","title":"低密度聚乙烯/乙烯-醋酸乙烯酯/炭黑导电发泡材料的压阻特性","volume":"30","year":"2014"},{"abstractinfo":"运用热压成型工艺制备了0-3型0.5PZT/xC/(0.5-x)PVDF(x=0.002~0.016)压电复合材料,研究了复合材料的极化、压电和介电性能.结果表明:适量石墨的加入,可以明显提高复合材料的极化性能.随着石墨含量的增加,复合材料的压电系数、机电耦合系数升高,机械品质因数降低;当石墨含量x=0.008时,三者都达到极值.复合材料的介电常数和损耗随着石墨含量的增大而上升.","authors":[{"authorName":"徐任信","id":"ea49324e-d7de-4e3e-9881-0c52e7837733","originalAuthorName":"徐任信"},{"authorName":"陈文","id":"c9e7fa11-11ea-479f-8825-21538fde8ca9","originalAuthorName":"陈文"},{"authorName":"周静","id":"bbb12c5a-552a-4f31-9261-d537e233f43f","originalAuthorName":"周静"},{"authorName":"孙华君","id":"a88a080e-847d-4139-98ac-585add6cc9f2","originalAuthorName":"孙华君"},{"authorName":"胡圣飞","id":"4f6a8b10-b1eb-42f7-bb9d-d587adb7602c","originalAuthorName":"胡圣飞"}],"doi":"","fpage":"1008","id":"0e39d626-663f-4ee8-8ce2-e65d998fdeb4","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"152ca082-f543-42dc-8c06-662c2660e7b0","keyword":"压电复合材料","originalKeyword":"压电复合材料"},{"id":"4754597a-14d3-4c01-a5a5-051547ab4b1b","keyword":"石墨","originalKeyword":"石墨"},{"id":"60a936fc-7b46-4871-bf1a-4dede3d4c58d","keyword":"压电性能","originalKeyword":"压电性能"},{"id":"802e4c8a-ad21-449d-9724-7d2a1544758e","keyword":"介电性能","originalKeyword":"介电性能"},{"id":"06882f46-f6db-4c98-bc08-1acd39ff8c43","keyword":"极化","originalKeyword":"极化"}],"language":"zh","publisherId":"gncl200507011","title":"石墨改性0-3型PZT/PVDF复合材料电学性能研究","volume":"36","year":"2005"},{"abstractinfo":"采用动态力学分析(DMA)和导电行为同步联测方法,研究了银包空心微珠/甲基乙烯基硅橡胶导电复合材料在准静态微载荷、瞬态微载荷、交变微载荷和温度场下的导电响应行为.并用扫描电镜(SEM)观察了试样的拉伸断面形貌.结果表明,在交变微载荷和温度场作用下,导电复合材料的电阻表现出对拉伸频率的依赖性,并在拉伸频率f=1Hz时呈现出先增大,后减小的峰形变化.在应力松弛(瞬态微载荷)和蠕变(准静态微载荷)过程中,导电复合材料的电阻响应在一定程度上表现出高分子材料力学松弛的粘弹特性,这可能是因为互穿的高分子基体网络和导电填料网络间具有传导性.","authors":[{"authorName":"胡圣飞","id":"365759f5-606a-4579-a056-7d91ce44b3e8","originalAuthorName":"胡圣飞"},{"authorName":"张冲","id":"0710a63f-be62-48be-8b50-daa4f91ae010","originalAuthorName":"张冲"},{"authorName":"赵敏","id":"dc43ca87-93ee-4b06-8124-788f5aa99e85","originalAuthorName":"赵敏"},{"authorName":"李慧","id":"7bffe797-3db6-4352-9d28-a96858ec1628","originalAuthorName":"李慧"}],"doi":"","fpage":"2105","id":"1e04292f-65a7-4c87-bd92-797cca1a6ee3","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"1d87323c-14e5-4cf5-9dac-535038cda258","keyword":"银包空心微珠","originalKeyword":"银包空心微珠"},{"id":"1d3ad6e9-5a98-481c-8c62-1623ee5def15","keyword":"甲基乙烯基硅橡胶","originalKeyword":"甲基乙烯基硅橡胶"},{"id":"c8b6f1ed-09a1-40b0-b34a-49e629107a3b","keyword":"导电行为","originalKeyword":"导电行为"},{"id":"ba82d3e6-b821-4f81-bfcc-dcd35ccdd0b6","keyword":"动态力学性能","originalKeyword":"动态力学性能"}],"language":"zh","publisherId":"gncl201012018","title":"银包空心微珠/硅橡胶复合材料在微力场作用下的导电响应行为","volume":"41","year":"2010"},{"abstractinfo":"以偶氮二甲酰胺(AC)为发泡剂,过氧化二异丙苯(DCP)为交联剂,采用模压法制备聚丙烯/木粉发泡材料,并对不同木粉含量的发泡材料的准静态压缩特性进行了研究。结果表明,木粉加入后发泡材料的准静态压缩杨氏模量、屈服强度都有不同程度的下降,而添加了木粉的试样随着木粉量的增加,均呈现先增后降的变化规律,在添加量为30份时达到最大值;另外,随着压缩速率提高,发泡材料的杨氏模量、屈服强度及密实化起始应变均随之增加。","authors":[{"authorName":"胡圣飞","id":"ba8c7f52-6529-4546-829d-5ab1d8b1d16d","originalAuthorName":"胡圣飞"},{"authorName":"陈祥星","id":"f0c5abf2-0ac8-4c2c-93e5-abcdd7a0c71f","originalAuthorName":"陈祥星"},{"authorName":"李慧","id":"a1cff65b-e1f8-4600-81da-09100466069b","originalAuthorName":"李慧"},{"authorName":"胡伟","id":"7d70bfe7-de70-4464-9638-a7470546a60e","originalAuthorName":"胡伟"},{"authorName":"朱贤兵","id":"52558bbd-75e3-4a81-89ae-f42490dbb6a6","originalAuthorName":"朱贤兵"}],"doi":"","fpage":"55","id":"38ae0185-e8c6-4ba6-b56f-21d1026972cc","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"48e68769-f43f-4399-a64a-6eadabb4a60c","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"67a38791-76fd-48c4-8eb1-3c37f5f9fa05","keyword":"木粉","originalKeyword":"木粉"},{"id":"6326aecf-a8e9-48d9-8322-641d3b8b4929","keyword":"模压发泡","originalKeyword":"模压发泡"},{"id":"135571a1-0d3d-4bee-ac02-08bf22b59a4e","keyword":"压缩特性","originalKeyword":"压缩特性"}],"language":"zh","publisherId":"gfzclkxygc201211014","title":"聚丙烯/木粉发泡材料的准静态压缩特性","volume":"28","year":"2012"},{"abstractinfo":"通过甲基丙烯酸甲酯(MMA)在微波作用下改性稻壳粉研究了聚氯乙烯(PVC)/稻壳粉复合材料的流变特性.结果表明,PVC/稻壳粉复合材料为非牛顿性流体,增加稻壳粉的质量份及适当提高熔体温度能减小挤出胀大率.随着剪切速率的增加,挤出物畸变的平均波长和深度均有增加.当剪切速率为230 s~(-1)时,挤出物表面光滑;剪切速率为324s~(-1)时,挤出物表面有轻微的鲨鱼皮出现,有轻微的波纹状的畸变,呈蜂窝状;当剪切速率达到523 s~(-1)时,有明显的规律性鲨鱼皮畸变,波状物平均波长和平均深度分别达到90μm与20μm.提高温度、增加润滑剂及适当降低挤出速率可降低挤出物畸变的平均波长和深度.","authors":[{"authorName":"胡圣飞","id":"6deb98c1-6c73-438f-b745-b5da0b0f928f","originalAuthorName":"胡圣飞"},{"authorName":"陈文","id":"f04ad181-612d-44d7-ad4c-094762933007","originalAuthorName":"陈文"},{"authorName":"陈华","id":"370a51fa-9bd8-4012-b603-df87001180be","originalAuthorName":"陈华"},{"authorName":"赵敏","id":"f8f15573-22b0-4058-b4c0-a04a50c77014","originalAuthorName":"赵敏"},{"authorName":"张冲","id":"68121825-e25e-4975-85e7-311d0805d157","originalAuthorName":"张冲"}],"doi":"","fpage":"109","id":"53e7e9e6-7b79-4aa5-964a-27f8322410ad","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"65d507a8-cf9c-4e96-98a0-c70ba39c54b7","keyword":"聚氯乙烯","originalKeyword":"聚氯乙烯"},{"id":"e23d0049-a348-4d52-9c97-21f055717326","keyword":"稻壳粉","originalKeyword":"稻壳粉"},{"id":"ecff4e5b-d9f1-4500-a7f3-1a8f0f3f1248","keyword":"熔体破裂","originalKeyword":"熔体破裂"},{"id":"d174343a-a8e1-4e10-be06-088dfdf38db8","keyword":"挤出胀大","originalKeyword":"挤出胀大"}],"language":"zh","publisherId":"gfzclkxygc201003030","title":"PVC/稻壳粉复合材料的挤出流变特性","volume":"26","year":"2010"},{"abstractinfo":"以丙烯腈/丁二烯/苯乙烯共聚物(ABS)为基体,不锈钢纤维(SSF)和石墨为混杂导电介质制备了ABS/不锈钢纤维/石墨0-1-3复合体系。采用动态机械分析(DMA)、数字万用表和旋转流变仪等研究了复合材料的导电渗流行为、流变渗流特性的关联性及在DMA多频应变模式-动态微力场下的阻温特性与导电机理。结果表明,石墨的加入可明显提高复合体系的渗流导电能力;复合体系的导电渗流与流变渗流的渗滤阀值相近,均约为15%;在动态交变微载荷下,电阻率强烈的依赖于振动频率和温度,随着温度的升高,出现电阻正温度效应(PTC)和电阻负温度效应(NTC);且频率越高,SSF含量越低,复合体系的 PTC转变温度越高。","authors":[{"authorName":"杨敏","id":"faeece92-d7ad-4586-8ed4-b77c19ddfe79","originalAuthorName":"杨敏"},{"authorName":"刘清亭","id":"4dbdc7ac-a71d-41ac-a42c-c642d7781852","originalAuthorName":"刘清亭"},{"authorName":"张荣","id":"0d48de6a-35e1-418a-9baf-b94d52485d5e","originalAuthorName":"张荣"},{"authorName":"魏文闵","id":"18e49f0b-6787-47b1-8845-77d88e244aab","originalAuthorName":"魏文闵"},{"authorName":"胡圣飞","id":"36f33492-5cb5-48cf-b693-03017ff86185","originalAuthorName":"胡圣飞"}],"doi":"10.3969/j.issn.1001-9731.2015.12.026","fpage":"12127","id":"767ee089-d4ae-4028-8d12-ad6df89cdfa8","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"381e97f2-38f9-47f6-a7b4-0f6d008ed12e","keyword":"ABS","originalKeyword":"ABS"},{"id":"541132d8-5366-47f4-b401-c82c5b1ae815","keyword":"不锈钢纤维","originalKeyword":"不锈钢纤维"},{"id":"0c4495e8-3940-4add-bd39-163f21d68919","keyword":"石墨","originalKeyword":"石墨"},{"id":"a2b3de23-907e-4b36-8efc-00bdf709bdd5","keyword":"导电复合材料","originalKeyword":"导电复合材料"}],"language":"zh","publisherId":"gncl201512026","title":"ABS/不锈钢纤维/石墨导电复合材料的导电特性?","volume":"","year":"2015"}],"totalpage":35,"totalrecord":349}