{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"建立了高炉炉缸炉底冷却的二维有限元传热模型。该模型能计算紊流水冷冷却器以等效对流系数表征的冷却参数,能反解服役炉缸实际冷却强度。等效冷却条件参数可用于缩小多维炉缸传热模型的计算域和规模,且不失边界条件精度。文中设计了参数化有限元建模及分析的计算程序,基于管内紊流水努赛尔特征数,定义一个物性综合系数,构造了更为简明的对流系数计算表达式。","authors":[{"authorName":"陈良玉","id":"18c486bf-9d3f-4591-b3b7-53c79866db60","originalAuthorName":"陈良玉"},{"authorName":"王志强","id":"25fee379-4e3e-4af7-af8e-14fc88b3438c","originalAuthorName":"王志强"},{"authorName":"李杨","id":"c9fb4151-cbb0-4db5-b4f0-262019a65b1b","originalAuthorName":"李杨"}],"doi":"10.14186/j.cnki.1671-6620.2016.03.003","fpage":"171","id":"6b29f511-1ee6-4b53-b3c8-680a1cbb19f0","issue":"3","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"e6a31cf7-2326-4b11-b929-31971856a7f9","keyword":"高炉缸炉","originalKeyword":"高炉缸炉"},{"id":"e63c2931-07e7-4c48-9ba4-e8f306e3ee15","keyword":"传热","originalKeyword":"传热"},{"id":"d230a584-c0d9-4a60-afa7-5bafbf94dda9","keyword":"等效对流系数","originalKeyword":"等效对流换热系数"}],"language":"zh","publisherId":"clyyjxb201603003","title":"高炉炉缸炉底内衬的等效冷却条件计算方法","volume":"15","year":"2016"},{"abstractinfo":"建立了多孔铝的一维瞬态对流模型,采用反演分析方法求得了多孔铝的体积对流系数.给出了多孔铝对流的无量纲准则关联式,并在较宽的孔结构范围内(孔隙率为60.0%~95.0%、孔径为2.5~6.0 mm)研究了孔结构对多孔铝系数的影响.结果表明:多孔铝的系数随着风速的增加而提高.在风速相同的条件下,系数随着孔径和孔隙率的减小而提高.在风机功率相同的条件下,系数随着孔隙率的增大而提高,在孔隙率约为85%时达到峰值.","authors":[{"authorName":"张伟开","id":"e5985907-b5f9-4f2d-9817-fb81a3a63c71","originalAuthorName":"张伟开"},{"authorName":"李乃哲","id":"e431f160-0f0e-4fc7-916b-dc56f919086e","originalAuthorName":"李乃哲"},{"authorName":"何德坪","id":"15afea7f-487b-4bb6-aba7-4aaf4ce56213","originalAuthorName":"何德坪"}],"doi":"10.3321/j.issn:1005-3093.2007.01.004","fpage":"20","id":"753abbd2-4c0a-42ce-8549-2d6df055cc82","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"e73fc095-9cd0-4028-854e-ce1761a541b6","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"9d25a203-0869-494d-95f9-4961b6ef12d1","keyword":"多孔铝","originalKeyword":"多孔铝"},{"id":"2f57b8cb-158e-40f3-868c-2f578fa7116e","keyword":"体积对流系数","originalKeyword":"体积对流换热系数"},{"id":"c8e60fec-9d09-427f-9d6d-5a35cc550d27","keyword":"瞬态对流实验","originalKeyword":"瞬态对流换热实验"},{"id":"f774a7a4-40f5-4917-bb50-0ee04b4807ba","keyword":"反演分析","originalKeyword":"反演分析"}],"language":"zh","publisherId":"clyjxb200701004","title":"多孔铝对流系数的反演分析","volume":"21","year":"2007"},{"abstractinfo":"根据固体导热理论讨论大平板和平面轴对称圆筒中对流边界的等效置换问题.利用有限元计算了高炉炉缸冷却壁中水管表面的对流边界向内部边界等效置换,给出了算法和计算实例.对流边界置换后可使冷却壁一炉墙结构的平面导热问题化为一维问题.","authors":[{"authorName":"陈良玉","id":"33afea10-6ad7-427b-89ad-c78b82da5b88","originalAuthorName":"陈良玉"},{"authorName":"李玉","id":"d74ab904-0957-458c-b095-f0d3c36bb3d8","originalAuthorName":"李玉"}],"doi":"10.3969/j.issn.1001-1447.2007.06.008","fpage":"26","id":"7e752166-46a4-4627-813f-37577a031cb1","issue":"6","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"c65c77d7-319f-4c08-a7b2-ce9e4571b815","keyword":"高炉炉缸炉墙","originalKeyword":"高炉炉缸炉墙"},{"id":"bfe84916-0041-41d3-b1a0-2aba9a2741b4","keyword":"冷却壁","originalKeyword":"冷却壁"},{"id":"ac20fdbc-fc05-426f-a0ed-0edc2f15c2ce","keyword":"对流","originalKeyword":"对流换热"},{"id":"3ff87482-ba0d-409f-a638-49620395cf4c","keyword":"边界等效置换","originalKeyword":"边界等效置换"}],"language":"zh","publisherId":"gtyj200706008","title":"高炉炉缸冷却壁对流边界的等效置换与导热模型化简","volume":"35","year":"2007"},{"abstractinfo":"为了能够更好地控制凝固过程热和溶质的传输,以二元合金为例,研究了在单边散热条件下,不同界面系数和密度对溶质对流的影响.研究表明:当材料密度一定时,随着界面系数的提高,沿散热方向上的温度梯度增大,溶质对流的效果增强;当界面系数为1 000 W/(m2·K)时,在凝固初期铸件底部出现涡流现象;在界面系数不变的情况下,随着材料密度的增加,铸件内液体金属的溶质对流效应减弱.","authors":[{"authorName":"李强","id":"352ab6c9-3be7-4924-82a4-5908692af333","originalAuthorName":"李强"},{"authorName":"莫春立","id":"9d9ce1f4-a866-4e5a-bfb4-1089fc65e7df","originalAuthorName":"莫春立"},{"authorName":"康秀红","id":"08cf5472-d4f4-4e75-9fcb-6e5cf37b9f7a","originalAuthorName":"康秀红"},{"authorName":"李殿中","id":"5741fef5-72e9-43e6-9371-e3bc39a10450","originalAuthorName":"李殿中"},{"authorName":"钱百年","id":"fbba73f9-f6f5-4b0e-af70-6e8c0ebaf26b","originalAuthorName":"钱百年"}],"doi":"10.3969/j.issn.1005-0299.2005.01.024","fpage":"94","id":"f8bebe7d-951c-4a38-8282-c248641ce5d2","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"3529ecb4-496e-42bc-a89f-5a74ebc35c3c","keyword":"溶质对流","originalKeyword":"热溶质对流"},{"id":"bfb007b1-b1ac-4e70-a899-db7a232267f5","keyword":"凝固","originalKeyword":"凝固"},{"id":"3d162827-7d18-4652-b379-af01a63f7ace","keyword":"界面系数","originalKeyword":"界面换热系数"},{"id":"9932b98e-959e-4c86-8c63-e4bbf121195b","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"clkxygy200501024","title":"模拟界面系数和密度对溶质对流影响","volume":"13","year":"2005"},{"abstractinfo":"本文采用数值模拟的方法研究了吹风比M和孔阵排列偏转角γ对致密微孔壁复合冷却侧壁面上对流系数的影响.分析比较了在M=0.50~2.0、γ=10°~35°几种情况下的对流系数.结果表明:M越大,对流系数越低.在气膜孔区内的上游部分γ对斜排对流系数影响不很明显,在中下游部分斜排模型的对流系数比常规错排模型低.","authors":[{"authorName":"陈焱","id":"961fd578-4e78-4e22-a91c-324c975359dc","originalAuthorName":"陈焱"},{"authorName":"吉洪湖","id":"654ff93b-f6a3-4ebb-923b-3f8c849d6b59","originalAuthorName":"吉洪湖"},{"authorName":"胡娅萍","id":"7996e299-a527-43a8-b5e4-e2ef974409b8","originalAuthorName":"胡娅萍"}],"doi":"","fpage":"489","id":"2517a417-01b8-4a0c-8d29-c579222dab7f","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2c0da0d4-cb54-4ed7-8399-1294bf09ca03","keyword":"致密微孔壁冷却","originalKeyword":"致密微孔壁冷却"},{"id":"4ca4a1bf-2dfb-4e7e-8a97-e826b6aa03e6","keyword":"对流系数","originalKeyword":"对流换热系数"},{"id":"d52f4b89-668a-420c-b278-c2c55f4f0a6d","keyword":"吹风比","originalKeyword":"吹风比"},{"id":"0ac4d70f-fae6-4dac-8242-df5ef017f32c","keyword":"偏转角","originalKeyword":"偏转角"}],"language":"zh","publisherId":"gcrwlxb200503039","title":"致密微孔壁复合冷却对流系数研究","volume":"26","year":"2005"},{"abstractinfo":"建立了测量圆管内纳米流体流动与传热性能的实验系统,测量了不同粒子浓度的ZrO2/水纳米流体在雷诺数为3 000~18 000范围内的管内对流系数以及不同位置处纳米流体对流系数的变化情况.实验结果显示,在液体中添加纳米粒子显著增大了液体的管内对流系数,例如,在相同雷诺数时,与纯水相比,如果纳米粒子的质量浓度从1.6%增大到4.1%,则纳米流体的对流系数增加的比例从1.09增大到1.2.此外,从颗粒的浓度、粒径两方面分析纳米流体强化传热的机理.","authors":[{"authorName":"李庆领","id":"05964434-e788-456a-8673-506a16f4f8de","originalAuthorName":"李庆领"},{"authorName":"林红","id":"d1cc15da-88b5-41e3-9312-8c6abe915806","originalAuthorName":"林红"},{"authorName":"陈言武","id":"2178ba46-90e9-4bcd-af76-34046bdab5e5","originalAuthorName":"陈言武"},{"authorName":"刘炳成","id":"81b30f93-696f-429d-8314-07e9d7092631","originalAuthorName":"刘炳成"},{"authorName":"周艳","id":"e5bcf3e6-8071-4c62-af62-5696b51c1c64","originalAuthorName":"周艳"}],"doi":"10.3969/j.issn.1000-3258.2007.04.015","fpage":"321","id":"cd3cd848-9ed1-4316-828d-7be05daa4ec3","issue":"4","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"0ad6b5cb-e775-477e-8609-26bea4b14694","keyword":"纳米流体","originalKeyword":"纳米流体"},{"id":"004411f5-7205-4aef-a208-7dd7e637cfda","keyword":"对流系数","originalKeyword":"对流换热系数"},{"id":"58d0dbd9-567c-4405-bf15-23093865ea8a","keyword":"传热机理","originalKeyword":"传热机理"}],"language":"zh","publisherId":"dwwlxb200704015","title":"ZrO2纳米流体的对流系数测定及机理浅析","volume":"29","year":"2007"},{"abstractinfo":"建立了热带钢超快速冷却过程的导热微分方程,采用有限差分方法计算了薄带钢实现超快速冷却(对于4 mm以下的薄带钢,冷却速率可达300℃/s)所需的带钢表面对流系数.同时,在实验室条件下采用厚度为20 mm的钢板进行了超快速冷却试验,得到了超快速冷却条件下的带钢表面对流系数与冷却水流量的关系.结果表明,在一定水流量范围内随着冷却水量的增加,带钢表面系数逐渐增加;采用所确定的系数对不同厚度钢板得到的温降曲线与实测值吻合较好,具有较高的精度.","authors":[{"authorName":"王昭东","id":"534b88c5-1183-4e5a-a3bb-036278eac01f","originalAuthorName":"王昭东"},{"authorName":"袁国","id":"c19c7d83-ab01-48e7-8c29-0e70d146180f","originalAuthorName":"袁国"},{"authorName":"王国栋","id":"184091ec-059b-4b7e-9a76-6dd52d0a81ed","originalAuthorName":"王国栋"},{"authorName":"刘相华","id":"d881f27d-5d72-4852-b6c2-fd41b88c2597","originalAuthorName":"刘相华"}],"doi":"","fpage":"54","id":"882d088b-b454-4d1f-a84c-22b8910460ee","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a7bb1905-ae2e-4ed4-bb1a-e846ae9cf7c4","keyword":"热带钢","originalKeyword":"热带钢"},{"id":"c63a91db-2981-4d7e-8c35-94ce666939fe","keyword":"超快速冷却","originalKeyword":"超快速冷却"},{"id":"e21f7d00-2aef-469f-b5f9-8753288071c9","keyword":"系数","originalKeyword":"换热系数"}],"language":"zh","publisherId":"gt200607013","title":"热带钢超快速冷却条件下的对流系数研究","volume":"41","year":"2006"},{"abstractinfo":"采用ZLO1铝合金作为成型材料,用呋喃树脂砂作为造型材料.采用24通道的数据采集系统采集了铸件凝固与冷却过程中铸型、铸件内和铸件表面温度与时间的变化规律.从而为等效系数的反问题数值计算提供了第一手的数据.对两平板铸件进行了反问题的计算,其结果得出了两板件上下表面的等效系数KE与时间的变化关系.可以看出等效系数在凝固刚开始时达到一个峰值,而后逐渐减小,并且其大小与铸件的横截面积有关,这些为今后数值模拟中确定等效热交换系数KE提供了科学的计算数据.","authors":[{"authorName":"薛祥","id":"45e91783-1144-4a54-9c71-b5b560dd9fc7","originalAuthorName":"薛祥"},{"authorName":"周彼德","id":"3153f99e-3f89-4e2d-b8ea-dbaed390061b","originalAuthorName":"周彼德"},{"authorName":"蔺克亮","id":"2ef5cd3a-7a0a-4a3f-839b-35d73826b029","originalAuthorName":"蔺克亮"}],"doi":"10.3969/j.issn.1005-0299.2001.02.023","fpage":"206","id":"e26fdb5d-393e-4b27-8d3e-28af94343ba0","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"3d71a216-970c-4cf0-b76b-3125655a2fb5","keyword":"系数","originalKeyword":"换热系数"},{"id":"0c014ab5-a39c-4a7a-b104-6596c42c78b7","keyword":"传热反问题","originalKeyword":"传热反问题"},{"id":"9ff9b99a-7f0e-43e1-b45f-1f3c59b9ac1c","keyword":"非线性估计法","originalKeyword":"非线性估计法"}],"language":"zh","publisherId":"clkxygy200102023","title":"铸铝ZL101与树脂砂型之间等效系数的数值模拟","volume":"9","year":"2001"},{"abstractinfo":"建立了测量纳米流体对流系数的实验系统,测量了不同粒子体积份额的水-Cu纳米流体在层流与湍流状态下的管内对流系数,实验结果表明,在液体中添加纳米粒子增大了液体的管内对流系数,粒子的体积份额是影响纳米流体对流系数的因素之一.综合考虑影响纳米流体对流的多种因素,提出了计算纳米流体对流系数的关联式.","authors":[{"authorName":"李强","id":"4e3df97c-4f46-4051-b3bc-58dbd6c123b0","originalAuthorName":"李强"},{"authorName":"宣益民","id":"3ce4505f-a8ea-436b-8ca1-77c14ded3f5d","originalAuthorName":"宣益民"}],"doi":"","fpage":"721","id":"18f0882c-3e82-4746-8085-2839393f5ba3","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"5895eec9-002d-4bbf-b6b1-b82917f26a7b","keyword":"纳米流体","originalKeyword":"纳米流体"},{"id":"53e63092-315d-4d2a-ad54-926f23c2c113","keyword":"对流","originalKeyword":"对流换热"},{"id":"c68c534d-1f24-49bd-8748-fa9607d7ce34","keyword":"实验关联式","originalKeyword":"实验关联式"}],"language":"zh","publisherId":"gcrwlxb200206018","title":"纳米流体对流的实验研究","volume":"23","year":"2002"},{"abstractinfo":"本文对空气流过烧结微细多孔介质内部的对流进行了实验研究.实验段为烧结多孔介质,颗粒的平均直径为0.2 mm.通过\"单吹法\"的实验方法进行瞬态实验,并用两种不同的数据处理方法得到了多孔介质内部对流系数.数据处理方法1利用局部非热平衡能量方程,结合实验数据,数值求得了多孔介质内部对流系数.方法2利用实验数据直接求得内部对流系数.研究表明:用数据处理方法1得到的多孔介质内部对流系与用方法2得到的结果相差在10%以内,与已有结果基本吻合.","authors":[{"authorName":"胥蕊娜","id":"7133df86-6606-4659-916c-be4362d7fe9b","originalAuthorName":"胥蕊娜"},{"authorName":"姜培学","id":"dc2baf95-9638-4c27-b9a6-5f8429e1fc72","originalAuthorName":"姜培学"},{"authorName":"宫伟","id":"a925bdeb-8590-41a9-ba96-16bf8d5148bb","originalAuthorName":"宫伟"}],"doi":"","fpage":"823","id":"2297c52d-31cd-4e3e-bec2-375ff0caee6c","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"695c3920-94d3-46a1-9b4d-f5fb6c260f23","keyword":"微细多孔介质","originalKeyword":"微细多孔介质"},{"id":"bbeade3e-ee79-448c-89f1-c9e60af1138b","keyword":"实验研究","originalKeyword":"实验研究"},{"id":"c10e83a6-aad6-47aa-86e2-98c6e0330425","keyword":"对流","originalKeyword":"对流换热"}],"language":"zh","publisherId":"gcrwlxb200605032","title":"微细多孔介质中对流实验研究","volume":"27","year":"2006"}],"totalpage":3757,"totalrecord":37569}