{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用PⅢ对Ti6A14V合金进行表面处理,温度控制在300~400℃之间,利用小掠射角X射线衍射技术(GXRD)、扫描电镜(SEM)研究不同工艺条件下的相结构和表面形貌,并且测量处理后试样的显微硬度、摩擦磨损性能.结果表明:试样表面形成了金红石相,且试样表面变得粗糙;在390℃处理后的试样硬度提高27%,抗磨损性能提高.","authors":[{"authorName":"辛国强","id":"3da24914-e3f5-4303-a258-77b6c997844e","originalAuthorName":"辛国强"},{"authorName":"杨学勤","id":"8f2ffd05-af3e-40ab-ad3c-eb1e0cee5b68","originalAuthorName":"杨学勤"},{"authorName":"董楠","id":"b2d24a48-0fee-4f9e-8f21-164289620d6e","originalAuthorName":"董楠"},{"authorName":"田修波","id":"f9cdc3c2-4b9b-4a39-bf5b-d6f5f8ccd78d","originalAuthorName":"田修波"},{"authorName":"杨士勤","id":"dcc394d3-0be3-4713-a9d8-819e8c5a258d","originalAuthorName":"杨士勤"}],"doi":"","fpage":"316","id":"fd818ea7-3031-4d61-97eb-0ff55e78b836","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"60b30707-1955-4c9b-b6fa-da33a891587b","keyword":"等离子体浸没离子注入(PⅢ)","originalKeyword":"等离子体浸没离子注入(PⅢ)"},{"id":"5ba5853c-b871-46a4-9c5c-559b9007cc1f","keyword":"Ti6A14V","originalKeyword":"Ti6A14V"},{"id":"644beaaa-e121-4df6-8da6-91569f9f67f1","keyword":"氧等离子体","originalKeyword":"氧等离子体"}],"language":"zh","publisherId":"xyjsclygc200802029","title":"氧等离子体离子注入Ti6A14V表面强化研究","volume":"37","year":"2008"},{"abstractinfo":"找到了一个能够用矩阵法计算的新序参量,此参量既能给出有限数量格点时一维伊辛模型中存在相变,又能给出无限数量格点时相变消失的结果.利用此序参量求出了一个计算相变点的简洁近似公式.","authors":[{"authorName":"田树旬","id":"c54330c7-9418-4f19-acea-4ace4901156e","originalAuthorName":"田树旬"}],"doi":"","fpage":"153","id":"195b84dc-2cf1-4ff5-b5ae-051891ff69c7","issue":"2","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"0b5100e5-1efb-4313-97d0-d8d72c94e4c6","keyword":"一维伊辛模型","originalKeyword":"一维伊辛模型"},{"id":"c92d5079-f68f-46e1-af35-edaf1223ca05","keyword":"相变","originalKeyword":"相变"},{"id":"58ac394a-4d55-4608-a4e5-f6519942b55b","keyword":"矩阵法","originalKeyword":"矩阵法"}],"language":"zh","publisherId":"dwwlxb201502013","title":"一维伊辛模型的相变-Ⅱ","volume":"37","year":"2015"},{"abstractinfo":"采用拉、压循环试验测试了Az31镁合金的包辛格效应(BE),并研究了BE的机制.测试结果表明:压缩预变形后反向拉伸出现明显的BE.而拉伸预变形后反向压缩出现反包辛格效应(RBE);且包辛格效应比反包辛格效应明显.循环拉、压加载过程中的显微组织和晶体取向演化研究结果表明,出现包辛格效应是由于预压缩时改变晶粒取向与反向拉伸时去孪生效应共同作用的结果:预拉伸变形虽然不改变晶粒取向,但使轴比c/a值降低,使反向压缩时发生孪生更加困难,从而导致反包辛格效应.","authors":[{"authorName":"盛光敏","id":"c9ab42e2-2133-4cf1-ab4a-f92cc2f52699","originalAuthorName":"盛光敏"},{"authorName":"张功庭","id":"4605e58a-d0ef-4a22-a466-7cbece4f00cf","originalAuthorName":"张功庭"},{"authorName":"阎春","id":"7536391b-61f0-4385-a48a-b623a665c2e2","originalAuthorName":"阎春"}],"doi":"","fpage":"615","id":"ab54f077-129d-4907-8e84-e186d56d0401","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"887c88d8-addc-42b0-b5f8-3e8cce9ff9e4","keyword":"AZ31镁合金","originalKeyword":"AZ31镁合金"},{"id":"caaeb69c-6323-40aa-aad7-462028c304ac","keyword":"包辛格效应","originalKeyword":"包辛格效应"},{"id":"47dcb88d-9b03-4a4f-b086-3a302ae69d87","keyword":"反包辛格效应","originalKeyword":"反包辛格效应"},{"id":"bfa9e8d6-f85c-4007-9b4c-a423e595353f","keyword":"晶粒取向","originalKeyword":"晶粒取向"}],"language":"zh","publisherId":"xyjsclygc201104011","title":"AZ31镁合金包辛格效应研究","volume":"40","year":"2011"},{"abstractinfo":"在哈密尔顿体系下,提出气体声波传播的一种新的谐振子模型,并引入群论确定气体声波传播过程中的分子振动模式、能级简并.新模型将气动声学声传播问题与分子振动关联起来.由于发展高效的薛定谔方程的数值计算方法,有利于联系分子的性质来解释声的传播.本文从此出发,用二阶有限差分格式和生成函数法构造的二阶辛格式分别计算一维定态谐振子势场和含时谐振子势场的薛定谔方程,分析了数值解的误差以及传播能量误差.结果表明辛算法具有明显的优势.","authors":[{"authorName":"涂运冲","id":"89ce3525-4bf5-4a81-9f5f-315f6693ed58","originalAuthorName":"涂运冲"},{"authorName":"谢军龙","id":"107df783-3691-4bac-b0d2-d3a5f79ab19b","originalAuthorName":"谢军龙"},{"authorName":"王嘉冰","id":"e8f75105-7121-4df8-8d8d-b3133fbb5071","originalAuthorName":"王嘉冰"},{"authorName":"张师帅","id":"e79e8205-deaa-457b-8697-73454f40c0a8","originalAuthorName":"张师帅"},{"authorName":"吴克启","id":"e123551e-9259-46f5-a518-15d6776ca313","originalAuthorName":"吴克启"}],"doi":"","fpage":"266","id":"2ee30482-c0fe-4aae-9670-9112bfc9cd98","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f7db380a-d4fb-4d4c-9dbd-7424595acd92","keyword":"哈密顿原理","originalKeyword":"哈密顿原理"},{"id":"fc4561d3-f506-49a8-939f-317715188622","keyword":"薛定谔方程","originalKeyword":"薛定谔方程"},{"id":"8f68545e-2626-4e47-8878-41fd8c7da370","keyword":"辛几何算法","originalKeyword":"辛几何算法"}],"language":"zh","publisherId":"gcrwlxb201402013","title":"辛和非辛算法求解薛定谔方程误差分析","volume":"35","year":"2014"},{"abstractinfo":"简述了一维定态Schr(o)dinger方程的辛形式、求解本征值问题的辛-矩阵法和辛-打靶法及在充分远空间计算线性无关解的保Wronskian算法.","authors":[{"authorName":"刘学深","id":"928b3ae5-60db-47a2-882b-1b42f59e7538","originalAuthorName":"刘学深"},{"authorName":"祁月盈","id":"99d4f1ad-b338-4d96-92a2-f1c555ec5588","originalAuthorName":"祁月盈"},{"authorName":"刘晓艳","id":"0c554a5c-ef4c-48f1-bffb-89c42f09a873","originalAuthorName":"刘晓艳"},{"authorName":"丁培柱","id":"f77f72a8-f4d5-4854-8da5-3a6c39e4a334","originalAuthorName":"丁培柱"},{"authorName":"周忠源","id":"c59f206d-53c1-4459-8759-86440c7fcf5b","originalAuthorName":"周忠源"}],"doi":"10.3969/j.issn.1007-4627.2002.z1.041","fpage":"138","id":"77f113a9-53a4-4643-ad02-255745b5c251","issue":"z1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"9276d21d-290d-420e-a161-838132c11d82","keyword":"定态Schr(o)dinger方程","originalKeyword":"定态Schr(o)dinger方程"},{"id":"da44f9f4-c90e-4f65-8432-2cae6c841e69","keyword":"分立态","originalKeyword":"分立态"},{"id":"2341644b-d0c5-42dc-97c2-e2989aeeb260","keyword":"辛-打靶法","originalKeyword":"辛-打靶法"},{"id":"61c3cae6-1b88-4f58-94d3-b0f389348c33","keyword":"保Wronskian","originalKeyword":"保Wronskian"}],"language":"zh","publisherId":"yzhwlpl2002z1041","title":"强场物理中定态Schr(o)dinger方程的辛算法","volume":"19","year":"2002"},{"abstractinfo":"针对制管过程中钢板的包辛格效应造成管体强度损失的问题,研究了国产X70管线用宽厚板在不同预变形量下的包辛格效应.试验结果表明:包辛格效应值最大为40 MPa;随预变形量的增加,包辛格效应值增加,当预变形量达到1.00%~1.25%时,包辛格效应值达到最大,再增加变形量,包辛格效应值减小;屈服平台的存在减小了包辛格效应值;板厚越厚,包辛格效应现象越明显.","authors":[{"authorName":"李殿杰","id":"891d32c9-b394-419d-894e-faf55f36012f","originalAuthorName":"李殿杰"},{"authorName":"韩宝云","id":"4c3cd6f4-6873-41cb-acac-43c6c831dad2","originalAuthorName":"韩宝云"},{"authorName":"郭烽","id":"5731b47e-067d-4c33-997e-d36f1745b291","originalAuthorName":"郭烽"}],"doi":"","fpage":"76","id":"913806c1-67f2-4762-ae9c-93cea5a42d24","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4f4392f7-8f51-4907-b592-a86599c0ecbf","keyword":"包辛格效应","originalKeyword":"包辛格效应"},{"id":"83593747-47be-4629-9a8e-6346aff1c0f1","keyword":"X70","originalKeyword":"X70"},{"id":"c8790279-c3be-4957-9410-7c039934c447","keyword":"管线钢板","originalKeyword":"管线钢板"}],"language":"zh","publisherId":"gt200510020","title":"X70管线用宽厚板包辛格效应的研究","volume":"40","year":"2005"},{"abstractinfo":"为了降低冷作强化非调质钢冷镦变形的变形抗力,研究了冷作强化非调质钢MFT8在冷变形过程中的鲍辛格效应。结果表明,鲍辛格效应随冷拔减面率γ增加而提高;γ=30%时,鲍辛格效应最大,压缩真应力最小;γ>30%时,压缩真应力重新提高,这是鲍辛格效应与加工硬化共同作用的结果,即加工硬化抵消了鲍辛格效应。","authors":[{"authorName":"马晓平","id":"66a2ffb1-ea45-4d47-b6fd-0516696d9d19","originalAuthorName":"马晓平"},{"authorName":"惠卫军","id":"9712fedd-f9ef-4449-8875-4d7a2f6a96f3","originalAuthorName":"惠卫军"},{"authorName":"刘春明","id":"643564d2-848e-4320-81a6-ace2246835e1","originalAuthorName":"刘春明"},{"authorName":"于同仁","id":"e6d4acdc-a15a-4ac9-8273-e9c548954070","originalAuthorName":"于同仁"},{"authorName":"孙维","id":"053cf643-eea6-4fc7-80ec-48091936d2df","originalAuthorName":"孙维"}],"categoryName":"|","doi":"","fpage":"39","id":"83c65af1-a99d-4a7a-8ef2-9f9c323239c9","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"ad9fa614-d92e-4490-9917-316b8da9d884","keyword":"鲍辛格效应;冷变形;冷作强化;非调质钢","originalKeyword":"鲍辛格效应;冷变形;冷作强化;非调质钢"}],"language":"zh","publisherId":"1001-0963_2007_1_13","title":"冷作强化非调质钢冷变形过程中的鲍辛格效应","volume":"19","year":"2007"},{"abstractinfo":"为了降低冷作强化非调质钢冷镦变形的变形抗力,研究了冷作强化非调质钢MFT8在冷变形过程中的鲍辛格效应.结果表明,鲍辛格效应随冷拔减面率γ增加而提高;γ=30%时,鲍辛格效应最大,压缩真应力最小;γ>30%时,压缩真应力重新提高,这是鲍辛格效应与加工硬化共同作用的结果,即加工硬化抵消了鲍辛格效应.","authors":[{"authorName":"马晓平","id":"e71d647f-f1b8-4fe9-94a5-14f1c25b7ef1","originalAuthorName":"马晓平"},{"authorName":"惠卫军","id":"ea57af14-a833-493b-ba80-8af82518580c","originalAuthorName":"惠卫军"},{"authorName":"刘春明","id":"533688d7-9449-4ee8-b1e0-0e0aca5821d7","originalAuthorName":"刘春明"},{"authorName":"于同仁","id":"2730e093-0043-40e9-b6c2-6af382c85f06","originalAuthorName":"于同仁"},{"authorName":"孙维","id":"fa79f8fa-653d-449d-b661-ee710c0ab72d","originalAuthorName":"孙维"}],"doi":"","fpage":"39","id":"feeb9eda-192f-44df-bb90-2069726e8e8a","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"33646a30-f449-4ed8-878f-bee64cec0ab3","keyword":"鲍辛格效应","originalKeyword":"鲍辛格效应"},{"id":"e2666c2c-8917-41e1-9c39-6f7331a35c94","keyword":"冷变形","originalKeyword":"冷变形"},{"id":"8f05d45b-4648-4287-89eb-33382ed5b354","keyword":"冷作强化","originalKeyword":"冷作强化"},{"id":"e095ec6d-6065-48ea-b5bb-cefb903babdd","keyword":"非调质钢","originalKeyword":"非调质钢"}],"language":"zh","publisherId":"gtyjxb200701009","title":"冷作强化非调质钢冷变形过程中的鲍辛格效应","volume":"19","year":"2007"},{"abstractinfo":"采用辛算法计算并讨论了氢原子在不同峰值强度或不同脉宽下的谐波谱. ","authors":[{"authorName":"刘晓艳","id":"d08a623c-060e-433d-9814-4ffa6ba18160","originalAuthorName":"刘晓艳"},{"authorName":"刘学深","id":"53d01671-2970-4dd6-8b05-900abde903e8","originalAuthorName":"刘学深"},{"authorName":"杨玉军","id":"f355bb94-64ea-4b67-b9f5-76f4f181f501","originalAuthorName":"杨玉军"},{"authorName":"丁培柱","id":"21a55d57-a9be-420b-b751-fe66d47d05e9","originalAuthorName":"丁培柱"}],"doi":"10.3969/j.issn.1007-4627.2002.z1.040","fpage":"134","id":"59fab06f-06a3-4df5-bfaf-901d2863c8c9","issue":"z1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"edd4db48-a8e1-4085-b4a7-7249ec51deda","keyword":"激光与原子相互作用","originalKeyword":"激光与原子相互作用"},{"id":"2ceb6957-00d3-43a5-89dd-d81374547317","keyword":"谐波谱","originalKeyword":"谐波谱"},{"id":"974154a3-d837-4113-bcbb-da53628b57ca","keyword":"束缚态几率","originalKeyword":"束缚态几率"}],"language":"zh","publisherId":"yzhwlpl2002z1040","title":"应用辛算法计算强激光场中的一维模型氢原子","volume":"19","year":"2002"},{"abstractinfo":"以4-羧基-4'-羟基偶氮苯为母体,与正溴辛烷同时发生酯化和醚化反应,合成了一种新型偶氮苯液晶化合物-4-羧酸正辛酯基-4'-正辛氧基偶氮苯,其结构采用红外光谱(FT-IR)和核磁共振氢谱(1 H NMR)进行表征.采用360 nm和440 nm的紫外-可见光交替照射,该偶氮苯液晶在乙醇溶液中能够发生顺反光异构化反应,经重复照射10次,其紫外吸收峰均能回复至最初状态.通过差示扫描量热仪(DSC)和偏光显微镜(POM)研究发现,该偶氮苯液晶为热致互变液晶,显示扇形织构的近晶相,并且易于汇集形成马尔他十字液晶相.","authors":[{"authorName":"王丹","id":"19da7842-5e0b-4b92-93a6-222c20833838","originalAuthorName":"王丹"},{"authorName":"赵常礼","id":"7f1b3c13-b38f-4e9a-96ee-54c0ed83231b","originalAuthorName":"赵常礼"},{"authorName":"方嫃嫃","id":"273b7bb1-e672-4a28-907e-18ac998de9d3","originalAuthorName":"方嫃嫃"},{"authorName":"张曦","id":"bd429711-3de5-4b80-a3a5-fc38e5ae6f66","originalAuthorName":"张曦"}],"doi":"10.11896/j.issn.1005-023X.2015.10.019","fpage":"82","id":"60d05a9d-5d6e-4c46-b85c-3914677b3e05","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"672d75f4-461f-4092-814d-215e45cde589","keyword":"偶氮苯","originalKeyword":"偶氮苯"},{"id":"a3944b68-c074-43d7-9557-be9da153098a","keyword":"正溴辛烷","originalKeyword":"正溴辛烷"},{"id":"6ecaa0a6-4286-4b0e-a9a6-38b6038b9e88","keyword":"光异构化","originalKeyword":"光异构化"},{"id":"9883d7af-e1b3-474f-b960-6e76a6a9bcab","keyword":"马尔他十字","originalKeyword":"马尔他十字"}],"language":"zh","publisherId":"cldb201510019","title":"4-羧酸正辛酯基-4'-正辛氧基偶氮苯液晶的性能研究","volume":"29","year":"2015"}],"totalpage":26,"totalrecord":255}