{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"多硫化物有机正极材料是继金属及其氧化物、无机多硫化物之后发展起来的新型电池正极材料,由于该类材料的分子结构中含有双硫键(S-S),通过发生可逆的电解聚-电聚合过程(2S=S-S+2e-)而发生能量交换.且最大的优点是可以按预定的方式控制其有机基团和分子结构以及通过共聚来改变其物理、化学和电学性能.本文主要介绍聚有机多硫化物的国内外研究状况及今后的发展方向.","authors":[{"authorName":"洪良贺","id":"e9797336-e314-4fc9-a375-50ac89e029b7","originalAuthorName":"洪良贺"},{"authorName":"王建营","id":"8475ee06-9e53-47e1-a93e-9082903c782a","originalAuthorName":"王建营"},{"authorName":"孙家跃","id":"45143773-e20f-4e5a-bc01-307791a3b70a","originalAuthorName":"孙家跃"},{"authorName":"胡文祥","id":"f2a7d58c-0490-43fd-9829-5419d8c39c53","originalAuthorName":"胡文祥"},{"authorName":"倪喜芬","id":"09eab5d1-0d05-4ba8-b77a-913e827d2012","originalAuthorName":"倪喜芬"}],"doi":"","fpage":"33","id":"9a8c38fe-eb97-45ad-af2d-360a91e626b3","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"6ae9115e-2e75-45b5-8c0a-0db4cb2c7553","keyword":"聚有机硫化物","originalKeyword":"聚有机硫化物"},{"id":"061f2d5a-9a59-4b19-add0-749d7a6a3d21","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"83738c2b-0bc5-4cd6-95e4-feb4a8adab54","keyword":"有机多硫化物","originalKeyword":"有机多硫化物"}],"language":"zh","publisherId":"gfzclkxygc200403009","title":"高比容量聚有机多硫化物电池正极材料的研究进展","volume":"20","year":"2004"},{"abstractinfo":"利用高压釜反应装置在高温高压下开展了汽油-硫酸镁化学还原反应含水和无水体系的模拟实验,通过气相色谱仪、微库仑仪、毛细管气相色谱/脉冲火焰光度检测器、红外光谱仪及X射线衍射仪对气、油、固三相产物分别进行了分析并对动力学进行了解析,表明主要生成氧化镁、硫、焦炭、硫化氢、二氧化碳以及硫醇、硫醚和噻吩类等有机硫化物;随反应温度升高,反应体系中无机硫转化为有机硫的趋势增强,并主要生成热稳定性高的噻吩硫.动力学解析表明,含水和无水条件硫酸镁转化反应的活化能分别为68.9和78.5 kJ/mol,证明水存在有利于无机硫向有机硫转化.","authors":[{"authorName":"岳长涛","id":"70a05ddc-d46b-436a-b76a-95c9dd7c51fa","originalAuthorName":"岳长涛"},{"authorName":"李术元","id":"9abd3af1-a76d-4b2c-9700-59eb020e78e6","originalAuthorName":"李术元"},{"authorName":"徐明","id":"c680465e-d7c0-4d9a-b9f2-97c575fc1133","originalAuthorName":"徐明"},{"authorName":"钟宁宁","id":"aabc3e49-c994-4c1c-ad35-6e319fd386c3","originalAuthorName":"钟宁宁"}],"doi":"10.3724/SP.J.1095.2011.00273","fpage":"542","id":"bf7bd0b4-c464-4a56-92ca-f4f1fba75ba0","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"f58425c0-b244-4a3b-9d09-f85b4cbf393d","keyword":"有机硫化物","originalKeyword":"有机硫化物"},{"id":"9fefd3a3-10d0-4c44-859c-d05fd91d53e2","keyword":"汽油","originalKeyword":"汽油"},{"id":"c297fae9-78fd-4707-bc45-6c20bebb4f5e","keyword":"硫酸镁","originalKeyword":"硫酸镁"},{"id":"d6b31960-d090-4fda-89b6-8b9be8fd8071","keyword":"模拟实验","originalKeyword":"模拟实验"},{"id":"f78cc48e-ac5a-4f9f-b84b-3f9d838ea8fa","keyword":"水介质","originalKeyword":"水介质"}],"language":"zh","publisherId":"yyhx201105010","title":"水介质对有机硫化物形成影响的模拟实验","volume":"28","year":"2011"},{"abstractinfo":"聚有机二硫化物是一种新型的储能材料,主要用于锂电池的正极.本文分析了这种材料的优势与不足,综述了这种材料的最新研究进展,并指出了这种材料未来研究趋势.","authors":[{"authorName":"苏育志","id":"dfd7ef57-994f-48f8-988c-e051932e7156","originalAuthorName":"苏育志"},{"authorName":"张建华","id":"9bb881ae-141d-49ed-aeeb-0d89e3ec3754","originalAuthorName":"张建华"},{"authorName":"郭仕恒","id":"98fded5d-41a4-4164-8767-cb555ff3fd3e","originalAuthorName":"郭仕恒"},{"authorName":"王国忠","id":"0f507cb8-7b75-47d0-a156-b166daa8da2d","originalAuthorName":"王国忠"},{"authorName":"郭庆时","id":"2c45e6f0-9d54-42ad-a38f-0df52a39a755","originalAuthorName":"郭庆时"}],"doi":"10.3969/j.issn.1673-2812.2006.01.040","fpage":"160","id":"764e3a01-c1e9-49e6-9d4f-e7444fdbd94e","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"87edb8ba-47fe-4e4f-b522-ddcba50cfde3","keyword":"聚有机二硫化物","originalKeyword":"聚有机二硫化物"},{"id":"19f9bab0-6fa0-4f91-be6f-a2769af09358","keyword":"储能材料","originalKeyword":"储能材料"},{"id":"53cc95f7-4271-4b99-a41f-64d1bd1959f4","keyword":"锂电池","originalKeyword":"锂电池"}],"language":"zh","publisherId":"clkxygc200601040","title":"新型储能材料聚有机二硫化物的研究进展","volume":"24","year":"2006"},{"abstractinfo":"聚有机二硫化物是20世纪80年代末才发展起来的新型储能材料,是一种具有比能量高、价廉低毒、易加工成型、结构易预控等优点的锂电池正极材料.简单分析了该材料的储能机理,重点综述了其近年来的研究成果和存在的问题,并探讨了其研究趋势.","authors":[{"authorName":"刘波涛","id":"f42df508-792c-4ef7-b5de-cca135fda985","originalAuthorName":"刘波涛"},{"authorName":"翁国明","id":"250a54eb-1c44-422e-9713-c34d7d0a734b","originalAuthorName":"翁国明"},{"authorName":"苏育志","id":"db435bc5-c797-49d1-989e-4445b7818515","originalAuthorName":"苏育志"}],"doi":"","fpage":"114","id":"0b6ab48e-d81b-4441-87eb-eb970b105bfd","issue":"19","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0eeed701-a9d0-4f39-8f2c-6e284142fdcc","keyword":"锂电池","originalKeyword":"锂电池"},{"id":"81424b5f-6067-4fca-99a6-0fa48743cf83","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"79387d95-cf7b-4bb1-9dee-0f2a053620a0","keyword":"聚有机二硫化物","originalKeyword":"聚有机二硫化物"}],"language":"zh","publisherId":"cldb200919025","title":"锂电池新型正极材料聚有机二硫化物的研究进展","volume":"23","year":"2009"},{"abstractinfo":"在流体并流向上气液固三相固定床反应器中考察了同系有机硫化物对Pd/树脂催化剂上异戊二烯选择加氢活性的影响,并对中毒失活的催化剂进行了XPS和红外光谱研究. 结果表明,在低温(60 ℃)和液相加氢条件下,硫醇和二硫醚同系物使Pd/树脂催化剂活性中毒的规律是,随着硫化物分子量的增大,其毒性减弱. 在w(S)=8×10-6的条件下,有机硫化物使催化剂上异戊二烯加氢活性失活的程度为: 二甲基二硫醚≈乙硫醇二甲基硫醚>噻吩. 乙硫醇和二甲基二硫醚使Pd/树脂催化剂中毒的机理是,它们分别在催化剂上发生S-H和S-S键断裂,并与Pd形成带烷基基团的S-Pd吸附络合物,致使催化剂上异戊二烯选择加氢活性降低. ","authors":[{"authorName":"黄星亮","id":"7559168b-1cd5-4301-b410-6256d50d4266","originalAuthorName":"黄星亮"},{"authorName":"沈师孔","id":"122f079c-9d00-49df-b1e3-60e89e8f980f","originalAuthorName":"沈师孔"}],"doi":"","fpage":"233","id":"f7b51edf-20f0-4a1c-ba20-cf8796aa6854","issue":"3","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"aee76197-d48e-4527-a564-69abdcfc0a31","keyword":"钯","originalKeyword":"钯"},{"id":"b7e04857-720f-4532-b63a-7667710d7db9","keyword":"树脂催化剂","originalKeyword":"树脂催化剂"},{"id":"c3e47b21-4549-4215-b514-4c7f44d76c54","keyword":"异戊二烯","originalKeyword":"异戊二烯"},{"id":"d79c39e6-50c5-41eb-b502-142d2b319a8b","keyword":"加氢","originalKeyword":"加氢"},{"id":"68f3c4ff-7c23-4319-88ba-28afd657bde3","keyword":"有机硫化物","originalKeyword":"有机硫化物"},{"id":"9da3bc73-620d-4173-9cc5-4981ca41570c","keyword":"中毒","originalKeyword":"中毒"}],"language":"zh","publisherId":"cuihuaxb200303016","title":"有机硫化物使Pd/树脂催化剂中毒的规律与机理","volume":"24","year":"2003"},{"abstractinfo":"研究了TS-1/过氧化氢催化体系中几种典型有机硫化物的选择氧化脱除.结果表明,噻吩和2-甲基噻吩仅在水或叔丁醇溶剂中才能被有效氧化脱除,且两者的反应历程不同.噻吩分子中的硫原子先被氧化,2-甲基噻吩分子中的噻吩环先被氧化.当过氧化氢与硫化物摩尔比为4时,噻吩和2-甲基噻吩均可被氧化为硫酸.采用甲醇、乙腈和水作溶剂时,甲基硫醚和丁基硫醇均可被选择氧化脱除.由于存在空间位阻,苯并噻吩、二苯并噻吩及4,6-二甲基二苯并噻吩在TS-1/过氧化氢体系中均不能被有效脱除.","authors":[{"authorName":"孔令艳","id":"75586d03-c389-4612-b252-89fee580d6dc","originalAuthorName":"孔令艳"},{"authorName":"李钢","id":"a872bb09-4e4e-4117-995c-e27ba766e2e0","originalAuthorName":"李钢"},{"authorName":"王祥生","id":"ae32f33d-e5b4-48e0-92a3-070497a078ef","originalAuthorName":"王祥生"},{"authorName":"王云","id":"bf9e692a-805f-47e1-afd0-870e51717a38","originalAuthorName":"王云"}],"doi":"","fpage":"775","id":"9d7e982a-701e-43f1-a9fd-d6a800c9f3b2","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"9519668f-c448-4d38-acb0-aa42a6d03d7b","keyword":"钛硅分子筛","originalKeyword":"钛硅分子筛"},{"id":"597d456b-0baf-47f2-a051-1014aca21e4f","keyword":"过氧化氢","originalKeyword":"过氧化氢"},{"id":"1cf8afc0-f9c3-4454-8352-a6497cfeb2fc","keyword":"有机硫化物","originalKeyword":"有机硫化物"},{"id":"8ed69b14-2b1e-4d03-8c4e-5301637a1f6f","keyword":"噻吩","originalKeyword":"噻吩"},{"id":"530cf52a-f266-4011-9eb2-c47fde92d33d","keyword":"氧化脱硫","originalKeyword":"氧化脱硫"}],"language":"zh","publisherId":"cuihuaxb200410003","title":"TS-1/过氧化氢催化体系中有机硫化物的选择氧化","volume":"25","year":"2004"},{"abstractinfo":"报道一系列有机锡,有机钛,有机锆和有机膦取代多酸化合物对两种人体肿瘤细胞SSMC-7721和Hela的抗肿瘤活性.其中有机钛多酸化合物表现为高于其他具有相同多酸阴离子的化合物的抗肿瘤活性.发现化合物具有很高的体内抗肿瘤活性和较低的毒性,并发现化合物的抗肿瘤活性与化合物的氧化还原能力呈顺变关系.","authors":[{"authorName":"刘景福","id":"f94eb1ad-fbf2-4d0e-9c98-ca014be329b8","originalAuthorName":"刘景福"},{"authorName":"王晓红","id":"b493de0e-8ae0-4a91-af7e-8e7cfd9b57be","originalAuthorName":"王晓红"},{"authorName":"孙振刚","id":"361aa49f-6ef1-4f50-ad5e-686073df63bb","originalAuthorName":"孙振刚"},{"authorName":"李恒达","id":"161ea05d-fde6-4b1f-9a5e-1a2592ef26fd","originalAuthorName":"李恒达"}],"doi":"10.3969/j.issn.1000-0518.2001.05.016","fpage":"357","id":"b96682c2-17d1-43b0-baba-6386513f6f93","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"40dae385-1d35-47b9-8417-9008c6e094d5","keyword":"有机金属","originalKeyword":"有机金属"},{"id":"cc02701f-28bf-49bd-b81e-38dd92f9dc9f","keyword":"多酸化合物","originalKeyword":"多酸化合物"},{"id":"70e906ca-0d71-43c8-9eed-963d6fa3818a","keyword":"抗肿瘤活性","originalKeyword":"抗肿瘤活性"}],"language":"zh","publisherId":"yyhx200105016","title":"有机和有机金属多酸化合物生物活性研究","volume":"18","year":"2001"},{"abstractinfo":"以金属硫化物半导体为催化剂,以可见光为光源光催化分解硫化氢回收硫和氢气工艺,将太阳能利用、硫化氢的处理及制氢有机结合,极具发展前景.从三元金属硫化物、改性三元金属硫化物和多元金属硫化物3个方面综述了用于光催化分解硫化氢的多元金属硫化物,并指出了光催化分解硫化氢过程中存在的问题.","authors":[{"authorName":"吕宏飞","id":"967b63c0-c3a0-49ff-88d6-8064cb9fa073","originalAuthorName":"吕宏飞"},{"authorName":"李锦书","id":"e0cbd04c-267f-40df-a140-81f0bbddd72a","originalAuthorName":"李锦书"},{"authorName":"单雯妍","id":"589bec35-f414-4af9-b031-88aed663ff94","originalAuthorName":"单雯妍"},{"authorName":"白雪峰","id":"40839ae9-b98c-4d1d-b8ae-6481300b3d5c","originalAuthorName":"白雪峰"}],"doi":"","fpage":"51","id":"62dd2390-063e-4b57-9099-b76001842ca8","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d54a6f66-841b-4620-b6fd-a2e91c1362ca","keyword":"光催化","originalKeyword":"光催化"},{"id":"52587f9c-e04c-42ec-be8c-af675ab36015","keyword":"硫化氢","originalKeyword":"硫化氢"},{"id":"e7be91aa-dd3a-4209-bf61-7bf8a8f64712","keyword":"制氢","originalKeyword":"制氢"},{"id":"073872af-5389-4358-a6ab-979b646f3d91","keyword":"多元金属硫化物","originalKeyword":"多元金属硫化物"}],"language":"zh","publisherId":"cldb201211010","title":"多元金属硫化物催化剂及光催化分解硫化氢的研究进展","volume":"26","year":"2012"},{"abstractinfo":"基于脉冲火焰光度检测器(PFPD)对硫化合物具有高的灵敏度和选择性以及价格低廉等优点,采用硫化氢选择性吸收法和气相色谱-脉冲火焰光度法(GC-PFPD)相结合技术,对川东北高舍硫天然气中有机硫化合物的形态分布进行了分析.优化了天然气预处理工艺条件,采用惰性的预处理系统除去高含硫天然气中的硫化氢,收集剩余的有机硫气体,用GC-PFPD法进行分析检测,根据标准物质保留时间定性方法和外标定量方法进行了定性和定量研究.结果表明:在最佳的实验条件下,该方法能充分除去高含硫天然气中硫化氢,且操作简单,对同一样品重复测定5次,各组分的相对标准偏差(RSD)都在10%以内,方法的加标回收率在91%~104%之间.","authors":[{"authorName":"李季","id":"bd17ce0b-07b1-436d-805e-f73f5822bc96","originalAuthorName":"李季"},{"authorName":"肖细炼","id":"035bada8-b906-45bd-a4d8-06f445866ac6","originalAuthorName":"肖细炼"},{"authorName":"张彩明","id":"9bb6a897-3611-4082-8271-e8e7aa5f277a","originalAuthorName":"张彩明"},{"authorName":"蒋启贵","id":"8402bb9e-2303-4095-a2d5-d36388f9c8ca","originalAuthorName":"蒋启贵"},{"authorName":"梁舒","id":"70392d11-7050-41e7-91a2-43b6b4eaa005","originalAuthorName":"梁舒"},{"authorName":"张秀莲","id":"685b0024-0391-4c80-a29b-5658556db13e","originalAuthorName":"张秀莲"}],"doi":"10.3969/j.issn.1000-7571.2010.03.002","fpage":"7","id":"ef81b753-fed1-43c9-ada1-79c6452f5121","issue":"3","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"062c35d7-427e-49ea-8663-8ea98ab7d245","keyword":"高含硫天然气","originalKeyword":"高含硫天然气"},{"id":"a88df526-f2bd-4cb3-8d4f-02c8006bd568","keyword":"硫化氢","originalKeyword":"硫化氢"},{"id":"9bc4c40c-38ce-4c8a-8bdb-97eccd205116","keyword":"有机硫化合物","originalKeyword":"有机硫化合物"},{"id":"8a8018fb-0e04-424b-bcb4-9c7c2a6bda01","keyword":"气相色谱","originalKeyword":"气相色谱"},{"id":"b29a6e47-1880-4168-83e0-2af30c79cc51","keyword":"脉冲火焰光度检测器","originalKeyword":"脉冲火焰光度检测器"}],"language":"zh","publisherId":"yjfx201003002","title":"川东北高含硫天然气中有机硫化合物的分析方法研究","volume":"30","year":"2010"},{"abstractinfo":"锂硫电池具有远高于锂离子电池的理论放电比容量(1 675 mAh/g)和能量密度(2 600 Wh/kg),被认为是很具应用潜力的电池体系,因此被广泛的研究和关注.然而硫的导电性能差、利用率低以及多硫化物的穿梭效应等问题使得锂硫电池的循环性能不稳定.为了克服穿梭效应的影响,近年来发展了多种新型的多硫化物阻隔层设计和制备方法来提高电池循环稳定性,本文分别从碳质材料阻隔层、金属氧化物阻隔层以及导电聚合物阻隔层三方面综述了最新的研究进展,并指出免集流体正极材料、阻隔层以及隔膜实现一体化设计将成为锂硫电池研究的发展方向.","authors":[{"authorName":"徐朝","id":"77571eec-3bda-4bef-bd86-d07166bbd354","originalAuthorName":"徐朝"},{"authorName":"游慧慧","id":"ba4aabb6-bffa-4bd5-8a78-20d3859d464b","originalAuthorName":"游慧慧"},{"authorName":"张磊","id":"8d82353a-a0ad-4895-be15-24d305c315f2","originalAuthorName":"张磊"},{"authorName":"杨全红","id":"194436da-93b2-49cc-b536-325fb8024389","originalAuthorName":"杨全红"}],"doi":"","fpage":"97","id":"a4009b42-e272-486f-83cb-0afc19e19791","issue":"2","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"34b55047-2469-4c18-bef0-540d2f9f515f","keyword":"锂硫电池","originalKeyword":"锂硫电池"},{"id":"6670f54c-22e1-47e9-bace-2408eace5a0d","keyword":"多硫化物阻隔层","originalKeyword":"多硫化物阻隔层"},{"id":"0441beca-64b4-4613-a12c-d523443610db","keyword":"穿梭效应","originalKeyword":"穿梭效应"},{"id":"80856526-9f0e-4ddc-b0b6-7c54a26ffbb1","keyword":"循环稳定性","originalKeyword":"循环稳定性"}],"language":"zh","publisherId":"xxtcl201702001","title":"多硫化物阻隔层在锂硫电池中的应用研究进展","volume":"32","year":"2017"}],"totalpage":13304,"totalrecord":133040}