{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用同位素交换技术研究了CO2-CO与铁氧化物体系的反应。考察了反应速率常数随反应气体流量的变化,介绍了处理同位素交换法所获得数据的两种方法:方法1从反应界面CO2分解反应的角度计算反应速率常数;方法2从反应界面CO生成反应的角度计算反应速率常数。根据对试验所测数据的计算,比较和分析了两种计算方法的不同,并对方法1进行了修正,得到了和方法2完全一致的计算结果。","authors":[{"authorName":"张腾","id":"392efd12-e371-492a-8d56-841a7b5e2e6f","originalAuthorName":"张腾"},{"authorName":"胡晓军","id":"b2b9b237-e6d1-4654-8a55-31c27ebefcce","originalAuthorName":"胡晓军"},{"authorName":"侯新梅","id":"3579e564-a185-403d-ba49-70c4567b4e7a","originalAuthorName":"侯新梅"},{"authorName":"周国治","id":"7ced4bed-c028-473d-bf77-ff25ba208ea2","originalAuthorName":"周国治"}],"doi":"","fpage":"59","id":"d084692c-5484-4b76-ab08-6861997a9c4d","issue":"7","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"acaa4f03-f43d-4d0b-85cb-113bef2dd5a7","keyword":"同位素交换技术","originalKeyword":"同位素交换技术"},{"id":"c87b6802-1bf9-4922-80e5-7c8e4fe6ee03","keyword":"CO2的分解","originalKeyword":"CO2的分解"},{"id":"85172328-d74e-446b-8384-c3c3cc27d634","keyword":"CO的生成","originalKeyword":"CO的生成"},{"id":"a27f549a-7a41-4638-a017-664c51b5176f","keyword":"铁氧化物","originalKeyword":"铁氧化物"},{"id":"77609988-de65-4d9d-b4cf-3d3c78fa2951","keyword":"反应速率常数","originalKeyword":"反应速率常数"}],"language":"zh","publisherId":"gtyjxb201207014","title":"同位素交换技术研究CO_2-CO和铁氧化物体系的反应及方法分析","volume":"24","year":"2012"},{"abstractinfo":"提出RH碳酸盐分解CO2脱碳工艺。通过从RH上升管喷吹碳酸钙粉剂实现钢水脱碳和净化钢液的目的。分析RH碳酸盐分解CO2的脱碳机理,并进行工业试验,考察RH碳酸盐分解CO2脱碳工艺对钢水洁净度的影响。结果表明,采用RH碳酸盐分解CO2脱碳工艺缩短RH精炼处理时间3 min,吨钢成本降低3~5元。铸坯的平均w(T[O])可达0.0010%以下,显著提高钢水的洁净度。","authors":[{"authorName":"林洋","id":"f9ed3f36-eb1e-4595-9166-b9471080d9b9","originalAuthorName":"林洋"},{"authorName":"唐复平","id":"9d7814f5-1ded-442b-938a-d76fee08f4de","originalAuthorName":"唐复平"},{"authorName":"沈明钢","id":"c773b165-9633-46a8-bf6b-fbc407618a77","originalAuthorName":"沈明钢"},{"authorName":"王晓峰","id":"6b672e54-687c-4092-bdf3-47ae68bd3a84","originalAuthorName":"王晓峰"},{"authorName":"唐琬茹","id":"4e91e68f-a453-41a7-9be6-7a4210b5a2a0","originalAuthorName":"唐琬茹"},{"authorName":"艾新港","id":"bc48c212-bf37-4f05-8d45-028ea209ba84","originalAuthorName":"艾新港"}],"doi":"10.13228/j.boyuan.issn0449-749x.20150341","fpage":"37","id":"d29a21d8-8892-4144-b156-c40074587f79","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"724de86a-9cc7-433d-b806-d04dc01767e1","keyword":"RH","originalKeyword":"RH"},{"id":"4327f225-be29-417b-a15f-b2d947ffe70a","keyword":"碳酸盐分解","originalKeyword":"碳酸盐分解"},{"id":"836f3134-201a-4b89-95e1-3e3b93350ac2","keyword":"CO2脱碳","originalKeyword":"CO2脱碳"},{"id":"4de1748f-3ad2-4d57-9b19-919723018ace","keyword":"洁净钢","originalKeyword":"洁净钢"}],"language":"zh","publisherId":"gt201605007","title":"RH碳酸盐分解CO2脱碳工艺","volume":"51","year":"2016"},{"abstractinfo":"目的:研究 CO2分压对 CO2/H2S腐蚀的影响规律,为海底管道材料的选择提供参考依据。方法采用高温高压反应釜进行腐蚀模拟实验,对腐蚀前后的试样进行称量,计算腐蚀速率。通过SEM观察腐蚀产物膜形貌,通过 XRD 分析腐蚀产物膜成分。结果当 CO2/H2S 分压比较高(1200)时, CO2分压为0.3、0.5、1.0 MPa对应的腐蚀速率分别为1.87、3.22、5.35 mm/a,随着CO2分压升高,腐蚀速率几乎呈线性增大趋势。当CO2/H2S分压比较低(200)时,CO2分压为0.3、0.5、1.0 MPa对应的腐蚀速率分别为3.47、3.64、3.71 mm/a,CO2分压变化对腐蚀速率的影响并不显著。当CO2/H2S分压比较高(1200)时,腐蚀产物以FeCO3为主,腐蚀受CO2控制;此时低CO2分压下的腐蚀产物膜较完整致密,高CO2分压下的腐蚀产物膜局部容易破裂,对基体保护性下降,因此腐蚀速率随CO2分压升高而增大。当CO2/H2S分压比较低(200)时,腐蚀产物以FeS为主,腐蚀受H2S控制;此时在不同CO2分压条件下,腐蚀产物均较完整致密,因此腐蚀速率相对较低,并未随着CO2分压升高显著增大。结论 CO2分压对CO2/H2S腐蚀速率的影响与CO2/H2S分压比密切相关,海底管道材料选择不仅要考虑CO2分压的影响,还要考虑CO2/H2S分压比的影响。","authors":[{"authorName":"胡丽华","id":"f280ce69-543e-4cf4-aef0-9827c396ebd6","originalAuthorName":"胡丽华"},{"authorName":"常炜","id":"0975a684-e4a3-4d3e-b9fa-685aa9b8f75e","originalAuthorName":"常炜"},{"authorName":"余晓毅","id":"8ba6aa92-f291-474d-ab72-6daefc78064e","originalAuthorName":"余晓毅"},{"authorName":"田永芹","id":"becb8ae8-7d85-465b-905a-b44880d66a6a","originalAuthorName":"田永芹"},{"authorName":"于湉","id":"6f973977-5d48-47db-836d-871203976259","originalAuthorName":"于湉"},{"authorName":"张雷","id":"0dee1d52-c516-4e54-b0af-6adf4f06f9eb","originalAuthorName":"张雷"},{"authorName":"路民旭","id":"fe9f6c19-0e45-4f06-ac3c-b079eaa442b9","originalAuthorName":"路民旭"}],"doi":"10.16490/j.cnki.issn.1001-3660.2016.05.008","fpage":"56","id":"1e387d9f-f124-4fe2-b772-7a4df48fef08","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"3bf0d594-10b1-42ac-843b-dd562ce75190","keyword":"碳钢","originalKeyword":"碳钢"},{"id":"91d6bb37-a8eb-4cf6-a359-f7a12e272c84","keyword":"海底管道","originalKeyword":"海底管道"},{"id":"ddd4be09-aef5-4fa2-8ff6-4332ceb64fe9","keyword":"CO2分压","originalKeyword":"CO2分压"},{"id":"c103409e-b31b-4907-b70b-4e23a20d9526","keyword":"CO2/H2S分压比","originalKeyword":"CO2/H2S分压比"},{"id":"77403ab1-614b-48e4-9442-06a809f50eb4","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"bfc34a86-6456-4887-81c7-47bfb990776f","keyword":"腐蚀产物膜","originalKeyword":"腐蚀产物膜"}],"language":"zh","publisherId":"bmjs201605008","title":"CO2分压对碳钢海底管道CO2/H2S腐蚀的影响","volume":"45","year":"2016"},{"abstractinfo":"CO2在水湿环境下容易引起钢铁严重腐蚀,低碳钢的CO2腐蚀速率可高达7mm/a,在厌氧条件下可达20mm/a.油田开发过程中,随着油井含水量日益增高,注CO2驱采油技术的推广应用,以及高含CO2油藏的开发,CO2腐蚀问题越来越突出.","authors":[{"authorName":"刘建新","id":"7aef9283-a3a6-4751-a9bc-3eea3bd15495","originalAuthorName":"刘建新"},{"authorName":"田启忠","id":"e2adb9b8-b930-4ea2-950b-cc78495be0b3","originalAuthorName":"田启忠"},{"authorName":"张瑞霞","id":"7d11eb79-94c1-488f-8738-7e2de22c683e","originalAuthorName":"张瑞霞"},{"authorName":"董社霞","id":"ae7cb868-0e8c-41c9-93e6-c56e2ff1c28f","originalAuthorName":"董社霞"}],"doi":"","fpage":"77","id":"c258317e-2e75-46ba-a609-7e0486b3b4d8","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"51a67a4b-5e2e-4d90-bead-ba7f8852d3d1","keyword":"CO2腐蚀","originalKeyword":"CO2腐蚀"},{"id":"6ad2d03f-8b17-4e72-9b08-725dea4cd52b","keyword":"油井","originalKeyword":"油井"},{"id":"20fa7246-f715-4168-8504-55d595b7e92d","keyword":"管材","originalKeyword":"管材"},{"id":"5a58a889-411f-4f23-b910-91cfccc30fdc","keyword":"开发过程","originalKeyword":"开发过程"},{"id":"5d48cec2-d6af-4386-8ccc-dda88fea0396","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"915572ae-cdba-4fd6-8220-0c6afb639055","keyword":"厌氧条件","originalKeyword":"厌氧条件"},{"id":"e4183ac4-fb5f-4a43-b412-5ed12da5bad4","keyword":"采油技术","originalKeyword":"采油技术"},{"id":"dc6e37f2-9f86-4057-adc7-ba70aca8cd06","keyword":"CO2驱","originalKeyword":"CO2驱"}],"language":"zh","publisherId":"fskxyfhjs201201018","title":"耐CO2腐蚀油井管材的选用","volume":"24","year":"2012"},{"abstractinfo":"钢铁生产过程CO2排放占工业CO2排放量的16%左右。如何降低CO2排放并使CO2进行资源化利用是钢铁工作者关心的重要问题。以CO2在炼钢过程中的资源化利用为出发点,分析了国内外CO2作为炼钢过程的搅拌气源、反应介质及保护气源的应用情况,并介绍了笔者在炼钢应用CO2方面所做的前期研究工作的进展。","authors":[{"authorName":"朱荣","id":"163fa83e-2329-44e4-b09a-372a9c52db68","originalAuthorName":"朱荣"},{"authorName":"毕秀荣","id":"f6a5fba9-001b-4333-a9a5-8baa446567b6","originalAuthorName":"毕秀荣"},{"authorName":"吕明","id":"b7712401-df2c-451d-a387-59215db983ae","originalAuthorName":"吕明"}],"categoryName":"|","doi":"","fpage":"1","id":"6e02d2c4-f21b-4480-bc56-4750f3de8f89","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"43fcdd02-35a5-4bcc-9063-51a62c38e860","keyword":"CO2 ","originalKeyword":"CO2 "},{"id":"d849c30c-75e4-4cbb-ba38-ce5c05e02326","keyword":" steelmaking ","originalKeyword":" steelmaking "},{"id":"9882840a-1bee-4165-84c3-bf2e958b41ff","keyword":" environmental protection","originalKeyword":" environmental protection"}],"language":"zh","publisherId":"0449-749X_2012_3_2","title":"CO2在炼钢工艺的应用及发展","volume":"47","year":"2012"},{"abstractinfo":"采用高温高压釜、失重法和扫描电镜, 对不同CO2分压(310.264 2、 930.792 6、1 551.321 0、2 171.849 4 kPa)条件下油管钢N80和P110的CO2/H2S腐蚀进行了研究.结果表明,随着CO2分压的升高,两种钢的CO2/H2S腐蚀速率均单调增加;除了CO2分压极低的情况以外,P110钢的腐蚀速率总是大于N80钢.","authors":[{"authorName":"张清","id":"9153ef4e-710f-4f51-b360-5ab4a7c4016d","originalAuthorName":"张清"},{"authorName":"李全安","id":"4ddaa442-3d47-4650-a61c-d1a9bdb787f3","originalAuthorName":"李全安"},{"authorName":"文九巴","id":"2eb1f844-3606-4446-8682-8e7180b7cd4d","originalAuthorName":"文九巴"},{"authorName":"白真权","id":"fc096973-c916-429c-92a9-13877ec9b59b","originalAuthorName":"白真权"}],"doi":"","fpage":"72","id":"73113d98-0a2b-442a-9a84-c5e4b12fdad5","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"cd9d4258-52b9-4ca7-85ea-31de9bad5abc","keyword":"CO2分压","originalKeyword":"CO2分压"},{"id":"498ed8a3-6c3b-49a9-b971-33eac92f8ba4","keyword":"N80钢","originalKeyword":"N80钢"},{"id":"0381df05-8784-45e4-851f-95584180c1bd","keyword":"P110钢","originalKeyword":"P110钢"},{"id":"29232fc4-9741-4c77-bd4c-89593b745d4b","keyword":"CO2/H2S腐蚀速率","originalKeyword":"CO2/H2S腐蚀速率"}],"language":"zh","publisherId":"gtyjxb200404018","title":"CO2分压对油管钢CO2/H2S腐蚀的影响","volume":"16","year":"2004"},{"abstractinfo":"利用高温高压反应釜进行腐蚀模拟试验。采用失重法、SEM 和 XRD 等手段研究了 CO2分压对 N80油管钢在100℃下 CO2腐蚀行为的影响。结果表明,N80钢的腐蚀速率随 CO2分压升高而上升。不同 CO2分压下腐蚀类型与腐蚀产物膜宏观形貌的变化相对应,在低 CO2分压下腐蚀产物膜完整覆盖。随着 CO2分压的进一步升高,腐蚀产物膜由局部覆盖转而重新完整覆盖。相应地,N80钢在低 CO2分压下发生全面腐蚀,然后随 CO2分压的进一步升高,腐蚀类型由局部腐蚀向全面腐蚀过渡。","authors":[{"authorName":"高纯良","id":"fa4ad39a-c18e-44ef-80a1-6cd490758111","originalAuthorName":"高纯良"},{"authorName":"刘明亮","id":"7a0632e1-3513-4cef-8d68-308996779e4a","originalAuthorName":"刘明亮"},{"authorName":"李大朋","id":"26274fa2-407b-4b5c-9f17-251ae25633bf","originalAuthorName":"李大朋"},{"authorName":"张雷","id":"cbd53d05-ed5d-4253-8a22-bfd68c917671","originalAuthorName":"张雷"},{"authorName":"马文海","id":"f89c96ce-e5fc-41d8-bcd8-2f60e8721141","originalAuthorName":"马文海"},{"authorName":"路民旭","id":"a71e54e3-dce2-44be-bc8e-3c5eb8b69366","originalAuthorName":"路民旭"}],"doi":"","fpage":"975","id":"ce705f75-97dd-48a7-8f64-6a443ff76bef","issue":"10","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"11bec7f7-d451-4428-82ce-7715f6b97f27","keyword":"CO2腐蚀","originalKeyword":"CO2腐蚀"},{"id":"b2a72165-8975-4834-bb48-f033436e1fd3","keyword":"CO2分压","originalKeyword":"CO2分压"},{"id":"0dc689b4-b2d3-4d68-a17e-98201e302e85","keyword":"腐蚀产物膜","originalKeyword":"腐蚀产物膜"},{"id":"fc199053-435a-45c2-bbf9-21778bb1c4eb","keyword":"N80钢","originalKeyword":"N80钢"}],"language":"zh","publisherId":"fsyfh201410004","title":"CO2分压对 N80油管钢 CO2腐蚀行为的影响","volume":"","year":"2014"},{"abstractinfo":"钙基吸收剂煅烧-碳酸化循环法(CCRs)是一种新兴的分离燃煤锅炉尾部烟气中CO2的方法.CaO与CO2碳酸化反应对于CCRs法的应用起着非常重要的作用.本文采用随机孔隙模型(RPM)对CaO与CO2碳酸化反应过程进行了研究,结果表明,适当提高CaO与CO2碳酸化反应的温度和系统压力,增加CaO吸收剂的初始孔隙率、优化CaO的初始比表面积等措施能够有效提高CaO碳酸化转化率和对CO2的吸收容量.","authors":[{"authorName":"王保文","id":"d1440541-689d-4445-9003-684276f62469","originalAuthorName":"王保文"},{"authorName":"郑瑛","id":"b5fc5851-6783-478a-a730-b62844888280","originalAuthorName":"郑瑛"},{"authorName":"贺铸","id":"1f507e09-4d3d-429a-b08f-2bb3c96b8d34","originalAuthorName":"贺铸"},{"authorName":"宋侃","id":"1989c6eb-0d2f-4ea5-b97b-18961e15dfb1","originalAuthorName":"宋侃"},{"authorName":"郑楚光","id":"556a6057-9448-4e87-8e71-7331623b4f53","originalAuthorName":"郑楚光"}],"doi":"","fpage":"1051","id":"c002d44b-36d9-4679-b98b-df4edd5223ac","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"438d5f39-98ae-4eec-b8fc-292a4cbad3e0","keyword":"煤燃烧","originalKeyword":"煤燃烧"},{"id":"0dc2ff18-b456-4faf-a363-bf94ff3c9e1a","keyword":"CO2分离","originalKeyword":"CO2分离"},{"id":"f0020209-6d83-4ce3-9770-308f6b22dcb4","keyword":"CaO碳酸化反应","originalKeyword":"CaO碳酸化反应"},{"id":"c54a3d59-35d7-4c96-962d-cbe52fd65d3c","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"6e16d8d7-c824-41ac-b64b-614c5038a968","keyword":"随机孔隙模型(RPM)","originalKeyword":"随机孔隙模型(RPM)"}],"language":"zh","publisherId":"gcrwlxb200606048","title":"CaO高温分离CO2过程的数值模拟","volume":"27","year":"2006"},{"abstractinfo":"利用静态容量法测定了288 K下CO、CO2和O2在UO2表面的吸附等温线,利用压降法结合原位显微观测研究了CO、CO2和O2对铀氢初始反应的影响.结果表明,3种气体在U02表面的吸附强弱关系为O2>CO2 >CO,Langmuir和Freundlich方程分别较好描述了CO、CO2的等温吸附行为.含氧气体对孕育期的影响与其吸附特性密切相关,3种气体阻抑效应的强弱关系为CO2>CO>O2.CO和O2对孕育期的影响近呈线性关系,CO2对孕育期的影响则与CO2含量有关.CO和CO2的阻抑机制主要是气体分子对铀表面活性位的优先占据,而O2的阻抑机制相对复杂,可能涉及水分子前驱态的形成和吸附O粒子扩散两种表面化学过程.根据阻抑机制和吸附特性导出的数学模型较好描述了CO和CO2对孕育期的影响规律.","authors":[{"authorName":"李赣","id":"bb54dea8-bc1b-474b-bcff-d13630afb420","originalAuthorName":"李赣"},{"authorName":"罗文华","id":"8719855c-3d2f-4043-8ea9-ab5d4d3298fd","originalAuthorName":"罗文华"},{"authorName":"银陈","id":"33e55647-0446-44b0-9e14-1833ac1d81ec","originalAuthorName":"银陈"}],"doi":"","fpage":"2125","id":"5a725fa1-3463-4436-83c2-3e26a9907356","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"e38479c8-8ce9-4da2-917b-954051d7caf5","keyword":"铀","originalKeyword":"铀"},{"id":"89225a8c-6569-4313-813f-11f4d1c5bf7c","keyword":"氢","originalKeyword":"氢"},{"id":"04c33221-6148-4465-ab96-ea3863fe376d","keyword":"孕育期","originalKeyword":"孕育期"},{"id":"83ce0cd6-d190-4be6-97a9-af2813a14d89","keyword":"含氧气体","originalKeyword":"含氧气体"}],"language":"zh","publisherId":"xyjsclygc201112014","title":"CO、CO2和O2对铀氢初始反应的影响","volume":"40","year":"2011"},{"abstractinfo":"研究了用中空纤维膜组件脱除CO2的吸收过程,制备了一系列不同装填率的中空纤维膜组件.用这些膜组件进行实验,以不同浓度的单乙醇胺(MEA)溶液为吸收剂,研究了气液两相的流量和浓度、组件的装填率、吸收剂的循环使用等因素对CO2膜吸收过程的影响.实验结果表明:气、液相流量的增大和液相MEA浓度的增加都可使CO2的传质通量增大;气相CO2浓度的增加会使总传质系数减小;在组件进口气液流量和浓度相同的条件下,组件装填率(0.5%~21%)的变大有利于CO2的脱除;随着吸收液循环次数的增加,CO2的传质通量和其脱除率都会降低.","authors":[{"authorName":"樊智锋","id":"4f605079-409e-4ef5-89a6-2e2b3d708f33","originalAuthorName":"樊智锋"},{"authorName":"刘广春","id":"0929bfd0-dc82-4b18-bc94-4d19721f4a81","originalAuthorName":"刘广春"},{"authorName":"王志","id":"877fdadf-3265-4cbb-9b02-6a052bd2b7ca","originalAuthorName":"王志"},{"authorName":"袁力","id":"317ad3f3-529c-4851-b5fe-62f257a95f13","originalAuthorName":"袁力"},{"authorName":"王世昌","id":"f9f75b6e-4a0e-46aa-aaed-49c7b634eadd","originalAuthorName":"王世昌"}],"doi":"10.3969/j.issn.1007-8924.2005.05.008","fpage":"34","id":"06fc34cf-10e5-404b-9082-30e4e8117620","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"eaae0381-c793-4acd-a447-d6bc37b0cf13","keyword":"中空纤维","originalKeyword":"中空纤维"},{"id":"21594d58-2c84-4f6d-a641-2f5dad59e5ce","keyword":"二氧化碳","originalKeyword":"二氧化碳"},{"id":"d31b0314-6528-424d-9917-95f917cb1eb6","keyword":"膜吸收","originalKeyword":"膜吸收"}],"language":"zh","publisherId":"mkxyjs200505008","title":"脱除CO2的膜吸收过程研究","volume":"25","year":"2005"}],"totalpage":22615,"totalrecord":226141}