{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用机械合金化方法制备MmNi3.9Co0.45Mn0.4Al0.25-CoB复合储氢合金.通过X射线衍射(XRD)分析、扫描电子显微镜(SEM)分析、充放电及线性极化测试.研究了球磨时间对复合储氢合金相结构及电化学性能的影响.研究结果表明:随着球磨时间的增加,复合储氢合金的衍射峰逐渐宽化,杂散衍射峰消失,表现出非晶化趋势;复合储氢合金颗粒尺寸变小,并星球状均匀分布.电化学测试结果表明:当球磨时间达到45 min时,复合储氢合金具有较好的活化及高倍率放电性能,30次循环容量保持卒最高,达到90.66%,表现出良好的电化学动力学性能及催化活性.但当球磨时间过长时,合金颗粒出现相互粘连及团聚的情况,局部出现较大结块,导致复合合金电极的交换电流密度降低.","authors":[{"authorName":"郜余军","id":"8a53175d-92d7-4a8c-a501-b54ec076a772","originalAuthorName":"郜余军"},{"authorName":"马立群","id":"8274e626-72ad-48f4-8c3f-5d2168f855e9","originalAuthorName":"马立群"},{"authorName":"杨猛","id":"069946bc-dfb9-42f8-b3c5-d1df1243c157","originalAuthorName":"杨猛"},{"authorName":"赵相玉","id":"aafe8339-14dd-4990-ae35-5bf101b01f47","originalAuthorName":"赵相玉"},{"authorName":"丁毅","id":"61d5cb12-bc66-4a5c-9157-8e382c260543","originalAuthorName":"丁毅"}],"doi":"10.3969/j.issn.0258-7076.2011.01.007","fpage":"33","id":"778bd4fc-2bbb-496b-a7b1-11baeb833960","issue":"1","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"30ca5ef6-7e6b-42eb-96e1-86c33ddc38b0","keyword":"稀土基储氧合金","originalKeyword":"稀土基储氧合金"},{"id":"119a0168-e24e-4f9e-8d9b-087d051b2b04","keyword":"球磨","originalKeyword":"球磨"},{"id":"6a125454-b7ab-4113-9a2b-b57c226f8b0e","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"xyjs201101007","title":"球磨时间对MmNi3.9Co0.45Mn0.4Al0.25-CoB复合储氢合金电化学性能的影响","volume":"35","year":"2011"},{"abstractinfo":"用共沉淀还原扩散法制备了不同化学计量比的LaMg2Ni9-xCOx(x=0.3~6.0)和MlMg2Ni9-xCox(x=0.3~4.5)稀土镁基储氢电极合金.电化学测试结果表明:制得的合金活化性能良好;在Co含量x逐渐增大的过程中,合金的活化次数没有发生明显的变化,合金的放电容量逐渐减小,合金的循环稳定性逐渐增强.混合稀土合金比纯镧合金的活化次数多、放电量小,但是循环稳定性好.合金结构分析表明,合金主相为MgNi2相和LaNi5相,随着Co含量增加,LaCo5相和LaCo3相含量增加.","authors":[{"authorName":"侯雪燕","id":"cbdd4f1e-e76e-475a-a2dc-355a694483f7","originalAuthorName":"侯雪燕"},{"authorName":"韩选利","id":"587538e9-c01b-4003-bac8-3ae3246f57b8","originalAuthorName":"韩选利"},{"authorName":"许妮君","id":"53041488-0d1b-40a6-8b52-61be97ffc40f","originalAuthorName":"许妮君"},{"authorName":"朱睿","id":"26ebf5e5-b3b4-4d12-b65b-84d5a0e7b798","originalAuthorName":"朱睿"}],"doi":"","fpage":"736","id":"59beb6dd-554e-49e8-9a11-006d1986a350","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"e60e7ff4-e642-47e4-a11c-17be3b8f1f59","keyword":"储氢合金","originalKeyword":"储氢合金"},{"id":"75ef042a-d1e5-48f5-8424-b113c520697f","keyword":"共沉淀还原扩散法","originalKeyword":"共沉淀还原扩散法"},{"id":"49616516-f94a-4ed4-9447-95b5be8fb009","keyword":"电化学性能","originalKeyword":"电化学性能"},{"id":"a910ac81-9324-433d-a877-2a7f73243e4d","keyword":"MgNi2相","originalKeyword":"MgNi2相"}],"language":"zh","publisherId":"xyjsclygc200704040","title":"纯La及混合稀土镁基储氢合金的性能研究","volume":"36","year":"2007"},{"abstractinfo":"镁基合金是一类重要的储氢材料.本文综述了Mg2Ni系合金、稀土-镁-镍、镁-稀土等3类含镁储氢合金的最新研究进展,探讨了合金化机理,即合金化元素、原子半径、相结构对含镁基储氢合金性能的影响规律.","authors":[{"authorName":"童燕青","id":"e615885a-1437-46b0-8635-07538c3d8ddf","originalAuthorName":"童燕青"},{"authorName":"欧阳柳章","id":"bb298660-9d43-4067-9633-081899467581","originalAuthorName":"欧阳柳章"}],"doi":"","fpage":"38","id":"d630a9e1-02ee-47fa-9491-f488622abcea","issue":"5","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"478bac6a-a8bf-4a2c-9d48-cf7665155088","keyword":"储氢合金","originalKeyword":"储氢合金"},{"id":"2227ebe9-4073-4c86-9306-f91b7fff1ef9","keyword":"镁基合金","originalKeyword":"镁基合金"},{"id":"14f35da1-edd9-47c6-9d69-e2fe736fe3bf","keyword":"合金化","originalKeyword":"合金化"}],"language":"zh","publisherId":"jsgncl200905011","title":"镁基储氢合金的最新研究进展","volume":"16","year":"2009"},{"abstractinfo":"首先采用化学还原法制备了CoZnB非晶合金,随后用机械球磨法将其引入到稀土基合金La0.7Mg0.3Ni3.5中制备成复合物,考察了CoZnB的添加量对La0.7Mg0.3Ni3.5合金电化学性能的影响.实验结果表明,加入CoZnB非晶合金后,复合物合金电极首次放电即可达到最大放电容量,高倍率放电性能得到了显著改善,电荷转移阻抗和极限电流密度均高于La0.7Mg0.3Ni3.合金电极.复合物合金电极La0.7Mg0.3Ni3.5-CoZnB(质量比1∶1)的最大放电容量高达487.5 mAh/g,800 mA/g放电电流密度下的复合物合金电极La0.7Mg0.3Ni3.5-CoZnB(质量比2∶1)的高倍率放电性能(HRD)可达94.8%.","authors":[{"authorName":"黄建灵","id":"ee7a33cc-0d3f-42eb-bcc8-624afc3aa1ab","originalAuthorName":"黄建灵"},{"authorName":"邱树君","id":"0cd6b2b6-615a-4b11-846f-d5334121bd57","originalAuthorName":"邱树君"},{"authorName":"褚海亮","id":"0a8ab5de-f014-4386-9291-3134adbde381","originalAuthorName":"褚海亮"},{"authorName":"邹勇进","id":"53172b33-b8c1-4519-8ef8-a425c672877d","originalAuthorName":"邹勇进"},{"authorName":"向翠丽","id":"60836666-3e43-48e6-9900-947d1ad2ce56","originalAuthorName":"向翠丽"},{"authorName":"张焕芝","id":"8d2c325d-e6ac-4182-ad2e-273cfcef9f4a","originalAuthorName":"张焕芝"},{"authorName":"徐芬","id":"0585612c-20ae-4cbf-9aac-24f399297438","originalAuthorName":"徐芬"},{"authorName":"孙立贤","id":"7598eb38-1014-4c34-be4e-449123db0b8f","originalAuthorName":"孙立贤"}],"doi":"10.14136/j.cnki.issn 1673-2812.2016.03.019","fpage":"427","id":"b8e9e499-a821-4715-beed-50202ed6f950","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"632479c5-222a-4f61-89fb-6b8cf0d6b482","keyword":"储氢合金","originalKeyword":"储氢合金"},{"id":"be14ae41-45fb-4282-9181-06abb0857493","keyword":"金属硼化物","originalKeyword":"金属硼化物"},{"id":"32f3028b-8365-47d2-a175-f683ff97c519","keyword":"放电容量","originalKeyword":"放电容量"},{"id":"09d4e9d8-ef11-493b-a0b6-87ad7a5271cd","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"clkxygc201603019","title":"CoZnB添加量对稀土基储氢合金电化学性能的影响","volume":"34","year":"2016"},{"abstractinfo":"介绍了金属基合金储氢的基本原理及反应机理,对其发展现状进行了较全面的总结.包括稀土系、锆系、钛系、镁系金属以及一些新型的储氢材料,标志着研究的最新动向.简单介绍了对材料性能的改进,提出了进一步研究储氢合金的方向.","authors":[{"authorName":"冯晶","id":"6b2e665d-0844-4eda-8ebf-88182afefa2c","originalAuthorName":"冯晶"},{"authorName":"陈敬超","id":"1aab36a5-4286-4a29-aa96-2fbd52655584","originalAuthorName":"陈敬超"},{"authorName":"肖冰","id":"bfa3b470-3a15-4498-a3a2-00d456f964f7","originalAuthorName":"肖冰"}],"doi":"","fpage":"239","id":"fa67dfcc-47ad-4bad-85d5-7e959aff62ff","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"fea58459-060d-430e-9eed-b49772d63f91","keyword":"储氢材料","originalKeyword":"储氢材料"},{"id":"e9306e62-599e-4f53-9fe5-b8879e535a35","keyword":"储氢合金","originalKeyword":"储氢合金"},{"id":"1c3057fc-4e20-49c8-a5bf-be228ad65b14","keyword":"氢能源","originalKeyword":"氢能源"},{"id":"fe8c6148-88bb-483d-9764-9bbf82e23c72","keyword":"储氢机理","originalKeyword":"储氢机理"}],"language":"zh","publisherId":"cldb2005z1077","title":"金属基储氢合金的研究进展","volume":"19","year":"2005"},{"abstractinfo":"对于稀土储氢合金冶炼废渣粉,采用水热酸溶-还原扩散-电弧熔炼的方法回收稀土氧化物和稀土镍钴合金.废渣粉首先用水热酸溶法分离其中的部分稀土氧化物,得到的合金富集物配加金属钙粒用还原扩散法将其中剩余的稀土氧化物转化为AB5型合金,还原扩散得到的合金粉采用电弧熔炼得到稀土镍钴合金.回收的合金杂质含量低,可作为基础原料用于熔炼AB5型稀土储氢合金,实现了稀土储氢合金冶炼废渣的循环利用.","authors":[{"authorName":"姜银举","id":"e47f4de0-1388-43d7-b894-ee18e7943ccf","originalAuthorName":"姜银举"},{"authorName":"宋绍开","id":"2d585819-d79b-4166-b94d-8db8b3824a67","originalAuthorName":"宋绍开"},{"authorName":"徐掌印","id":"bf95b835-b3e5-43b3-b0d5-4c0f044fa666","originalAuthorName":"徐掌印"},{"authorName":"马小可","id":"a55ae6d0-dc7b-4179-84c7-ffebc3368d6d","originalAuthorName":"马小可"},{"authorName":"杨吉春","id":"49d40553-726e-4961-ab38-967522ff1695","originalAuthorName":"杨吉春"},{"authorName":"刘晓东","id":"450f4a46-dc4a-4ea1-adb6-92901c6e9399","originalAuthorName":"刘晓东"},{"authorName":"罗果萍","id":"bf49f533-9cdf-4aee-8872-2986a1e90686","originalAuthorName":"罗果萍"}],"doi":"10.3969/j.issn.1004-0277.2012.04.018","fpage":"86","id":"74e1d0d9-bd97-431e-a4f7-ee9ac11ed219","issue":"4","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"d73607cd-ceff-4786-be0b-04447f4acfa2","keyword":"稀土储氧合金","originalKeyword":"稀土储氧合金"},{"id":"63505fd1-f577-454c-b39d-528968983a2b","keyword":"水热","originalKeyword":"水热"},{"id":"9f40f381-2e40-4cfb-8e29-4221d96da7ac","keyword":"还原扩散","originalKeyword":"还原扩散"},{"id":"e89f206a-6f69-4784-aa9d-79c0551e395b","keyword":"电弧熔炼","originalKeyword":"电弧熔炼"},{"id":"213eb245-c3dd-4b77-9040-c388e119d99c","keyword":"稀土镍钴合金","originalKeyword":"稀土镍钴合金"}],"language":"zh","publisherId":"xitu201204018","title":"从稀土储氢合金冶炼废渣中回收稀土镍钴合金的研究","volume":"33","year":"2012"},{"abstractinfo":"稀土储氢合金具有容量高、可大功率充放电、循环寿命长、无污染等优点,是镍氢电池负极的主要材料.近年来,我国在稀土储氢合金的研究与应用方面都取得了很大的成绩.结合此领域近几年国内外的相关实验研究成果,分别对影响稀土储氢合金性能的制备工艺、组成成分、颗粒度、热处理工艺及表面处理等各方面因素进行了综述,指出我国稀土储氢合金的性能与世界先进水平相比还存在较大差距,今后应积极开发新工艺、加快技术革新,从优化合金成分、降低生产成本、改善合金高倍率放电性能等方面着手加强研究.","authors":[{"authorName":"朱军","id":"3d6a53f0-5c88-4871-a35c-169fdfd5bfeb","originalAuthorName":"朱军"},{"authorName":"王娜","id":"5aded078-8e6a-4723-bb10-2ea85aacbbca","originalAuthorName":"王娜"},{"authorName":"杨文浩","id":"659e9e9b-83fc-473b-bc06-666fd6822701","originalAuthorName":"杨文浩"},{"authorName":"苗广礼","id":"bf285dcc-f23a-4d8c-afc2-7797f182a5f0","originalAuthorName":"苗广礼"},{"authorName":"刘漫博","id":"acf87071-5f6a-4ef8-8c9a-3d5af6fd1fc3","originalAuthorName":"刘漫博"}],"doi":"10.3969/j.issn.0258-7076.2011.05.025","fpage":"770","id":"d743b3a5-c340-4135-b3c3-f3c8147872fd","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"cc06be67-12ff-4015-a035-1a59ffd20a2b","keyword":"稀土储氢合金","originalKeyword":"稀土储氢合金"},{"id":"5e9b7020-b6bf-45b0-aa18-58658300d83f","keyword":"电化学性能","originalKeyword":"电化学性能"},{"id":"4c1a2c5a-6702-43ea-b6d6-63634b77b318","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"xyjs201105025","title":"稀土储氢合金性能影响因素分析","volume":"35","year":"2011"},{"abstractinfo":"在V3TiNi0.56储氢电池合金中添加0.204%纳米铜颗粒和0.102%稀土镓,并进行该汽车用新型钒基储氢电池合金的显微组织、物相组成及电池的电化学性能测试.结果表明,该新型储氢电池合金由V基固溶体相、TiNi相组成,具有明显的氧化峰和还原峰;V3TiNi0.56钒基储氢电池和新型钒基储氢电池,在充放电循环6次后的放电容量分别衰减了98.67%和9.62%,说明新型钒基储氢电池循环稳定性得到显著提高.","authors":[{"authorName":"于瑞","id":"1a55338a-df1f-4d79-82a4-0102efd082a9","originalAuthorName":"于瑞"}],"doi":"10.7513/j.issn.1004-7638.2014.04.006","fpage":"28","id":"8224ee68-3f61-4606-a9fa-932985c7f90c","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"7154273b-e4e6-405f-940d-c1f8887b599e","keyword":"钒基储氢电池","originalKeyword":"钒基储氢电池"},{"id":"aaadbe10-c502-4b32-9475-6b2a977a12fa","keyword":"V3TiNi0.56合金","originalKeyword":"V3TiNi0.56合金"},{"id":"6ea4e332-2505-429a-8abf-a62489ab1d4c","keyword":"纳米铜","originalKeyword":"纳米铜"},{"id":"f995afbe-c20a-4de3-b280-8fc860c70092","keyword":"稀土镓","originalKeyword":"稀土镓"},{"id":"c74f26de-9610-420b-8655-5b9bef243a49","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"gtft201404006","title":"汽车电池用新型钒基储氢合金的电化学性能研究","volume":"35","year":"2014"},{"abstractinfo":"综述了Ti-Mn基储氢材料的国内外研究现状与进展.详细介绍了已研究开发的二元、三元和多元合金及其储氢性能并讨论了影响储氢性能的主要因素.","authors":[{"authorName":"徐艳辉","id":"2b15f164-2b2e-4f31-83f7-c3243d04b485","originalAuthorName":"徐艳辉"},{"authorName":"耿伟贤","id":"7d7ab7b7-ce62-47fd-af60-e601a5f3c23b","originalAuthorName":"耿伟贤"},{"authorName":"陈昀","id":"36efa926-963d-4a89-a06c-efd7b1bba192","originalAuthorName":"陈昀"},{"authorName":"陈长聘","id":"9a9ee26d-c8c1-4e54-a144-ae352ff51793","originalAuthorName":"陈长聘"}],"doi":"10.3969/j.issn.1673-2812.2000.03.030","fpage":"130","id":"06b2b18e-76f3-48c2-9a4b-e1cf0298bc43","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"abfe830e-9092-436e-8a74-e370eb9610be","keyword":"Ti-Mn基","originalKeyword":"Ti-Mn基"},{"id":"c45ad790-cb79-40b2-8eb5-5bd4c0623130","keyword":"储氢合金","originalKeyword":"储氢合金"},{"id":"37bf55bf-d25f-448b-8bda-6877494c67ef","keyword":"Laves相","originalKeyword":"Laves相"}],"language":"zh","publisherId":"clkxygc200003030","title":"Ti-Mn基储氢合金研究进展","volume":"18","year":"2000"},{"abstractinfo":"利用不同的沉淀剂制备了一系列储氧材料,并应用BET、XRD、TPR及其储氧量的测定等方法对储氧材料进行了表征.结果表明,不同沉淀剂对样品的性能有重要的影响.在控制其它条件一致的情况下,用分别以氨水和以碳酸铵做沉淀剂可得到高温老化后仍保持高比表面积,储氧性能稳定的储氧材料;用(NH4)2CO3和NH3·H2O做混合沉淀剂所制得的储氧材料,其抗老化性能较差.3种不同沉淀剂所制备的储氧材料均可形成结构为四方晶相的CeO2-ZrO2固溶体,材料的还原性取决于比表面积,但与储氧性能无直接关系.","authors":[{"authorName":"庞秀江","id":"be3770d8-366a-4310-a046-81add5dd9f83","originalAuthorName":"庞秀江"},{"authorName":"龚茂初","id":"f8fec283-ccf0-46bf-8fe0-40e27eb24b19","originalAuthorName":"龚茂初"},{"authorName":"史忠华","id":"b1b9e6dd-5f40-4dd9-a2af-0d01fe761d9c","originalAuthorName":"史忠华"},{"authorName":"任屹罡","id":"8ee85345-d714-419c-89da-d372f7d10084","originalAuthorName":"任屹罡"},{"authorName":"王敏","id":"3b7e211f-477c-491a-bd74-d5801b14943f","originalAuthorName":"王敏"},{"authorName":"陈耀强","id":"d067ebc5-1ce7-41a7-9c35-3b67479e5ac2","originalAuthorName":"陈耀强"}],"doi":"","fpage":"2560","id":"0f794a30-2ee9-4ac5-ba70-28a92945c1d3","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"440210bf-ea19-4533-b9a4-530257589c05","keyword":"储氧材料","originalKeyword":"储氧材料"},{"id":"24b2b815-5ae6-4f47-8510-e057ba0c8661","keyword":"沉淀剂","originalKeyword":"沉淀剂"},{"id":"e2959c54-027d-420d-a85e-fd19e58f36d7","keyword":"结构","originalKeyword":"结构"},{"id":"e93e61d3-ff3f-46db-97ac-7ac8f389845f","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"gncl2004z1717","title":"沉淀剂对稀土储氧材料性能的影响","volume":"35","year":"2004"}],"totalpage":6543,"totalrecord":65427}