{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"分别以六官能度、三官能度和单官能度α-溴代异丁酸酯为引发剂,以溴化铜、配体五甲基二乙烯三胺(PMDETA)和还原剂Sn(EH)2混合物为催化体系,以占单体物质的量300×10-6的低铜盐用量的电子转移再生催化剂原子转移自由基聚合(ARGET ATRP)制备了丙烯酸丁酯、甲基丙烯酸甲酯的六臂、三臂星形和线型共聚物;采用凝胶渗透色谱三检测器联用仪、核磁共振氢谱对其进行了表征.结果表明,成功合成了分布较窄,支化特性明显的星形共聚物.将共聚物应用于清漆,对其流变性能和力学性能进行了研究,表明三臂和六臂星形比线型共聚物清漆的黏度分别下降了42.7%和63.6%左右,三者对应漆膜的力学性能相当.","authors":[{"authorName":"任强","id":"ede77629-8a85-4d24-9c01-63cd15d53cc1","originalAuthorName":"任强"},{"authorName":"向艳丽","id":"796439b0-5e71-4c47-b810-e0351702c6a6","originalAuthorName":"向艳丽"},{"authorName":"李坚","id":"d15f0bc1-9f06-46ca-abd6-4f628392dacc","originalAuthorName":"李坚"},{"authorName":"王莉莉","id":"6f834ef1-0cf2-49a5-b120-fc69a7c27f86","originalAuthorName":"王莉莉"},{"authorName":"张旸","id":"329b4d42-d7c6-486f-80e0-b125d28b563b","originalAuthorName":"张旸"},{"authorName":"邓健","id":"18260fbf-bf1c-4af6-af91-35fecd90720d","originalAuthorName":"邓健"},{"authorName":"陈建海","id":"38e3e186-e13a-4af4-89db-3349822d3e4f","originalAuthorName":"陈建海"},{"authorName":"方建波","id":"5ef70415-a1e3-413b-8302-20036f3ee172","originalAuthorName":"方建波"}],"doi":"","fpage":"6","id":"176a8dd6-eeea-4d45-8f73-290f05bed464","issue":"9","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b7bdcff1-89b6-455d-b1e8-2f4283123810","keyword":"原子转移自由基聚合","originalKeyword":"原子转移自由基聚合"},{"id":"ce9d3784-f7b6-46ef-a1ca-566104538559","keyword":"电子转移再生催化剂","originalKeyword":"电子转移再生催化剂"},{"id":"f17b708a-bddb-4152-812d-cdabf91c2caa","keyword":"星形聚合物","originalKeyword":"星形聚合物"},{"id":"e6c13f6c-8ad1-4411-b578-0df125d50a11","keyword":"黏度","originalKeyword":"黏度"},{"id":"d2679108-fbd4-48cc-9816-3f26fd695844","keyword":"涂料","originalKeyword":"涂料"}],"language":"zh","publisherId":"gfzclkxygc201309002","title":"星形丙烯酸酯树脂的ARGET-ATRP制备及在涂料中的应用","volume":"29","year":"2013"},{"abstractinfo":"以二茂铁作为催化剂,H2为还原气和载气,反应温度为650℃,压强15 kPa时,在一定的催化温度下,调节碳源中噻吩与环已烷的摩尔比,在减压化学气相沉积体系中制备了大量网状碳纳米管粉末.对反应过程中二茂铁的催化温度以及噻吩与环已烷的摩尔比对产物的影响进行了分析与研究,结果表明碳纳米管的产量随催化剂的量的增加而增大,其质量随催化温度的升高而下降;噻吩与环已烷的摩尔比对产物的形貌与质量有着一定的影响.用扫描电子显微镜(SEM)和拉曼光谱对碳纳米管进行了表征.","authors":[{"authorName":"李艳楠","id":"ee599c21-7a81-42bd-be47-74e071cbd266","originalAuthorName":"李艳楠"},{"authorName":"孙卓","id":"a3d99b89-b9e0-424f-951f-232fa829c2bb","originalAuthorName":"孙卓"},{"authorName":"陈岳","id":"d1ace59c-c9ca-44fa-bae3-33f5cdceddc1","originalAuthorName":"陈岳"},{"authorName":"张哲娟","id":"6378b774-2d2c-447c-9c74-9dadb34c21ce","originalAuthorName":"张哲娟"},{"authorName":"王莉莉","id":"6abcad6d-5b06-447d-95d2-e30af93129a4","originalAuthorName":"王莉莉"},{"authorName":"陈婷","id":"9b1f436a-2fd3-4112-abbf-a441fa66f377","originalAuthorName":"陈婷"},{"authorName":"陈奕卫","id":"15d4788f-bcc1-46ca-8450-8ef644c6064d","originalAuthorName":"陈奕卫"},{"authorName":"杨介信","id":"a119b03f-f938-47d7-9088-7bd0ffcb505c","originalAuthorName":"杨介信"}],"doi":"10.3969/j.issn.1007-2780.2007.03.011","fpage":"288","id":"00a26191-59c0-4de7-a673-a233903ac1bb","issue":"3","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"2f3413ae-ff27-4332-994b-4fa88531d019","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"0b01c205-a131-4e47-be4c-d4248de6ca6e","keyword":"硫颗粒的影响","originalKeyword":"硫颗粒的影响"},{"id":"6c9a7bae-120b-4693-8d05-cee901d4b289","keyword":"二茂铁的催化温度","originalKeyword":"二茂铁的催化温度"}],"language":"zh","publisherId":"yjyxs200703011","title":"利用流动催化法在减压化学气相沉积系统中制备碳纳米管粉末","volume":"22","year":"2007"},{"abstractinfo":"采用磁控共溅射法在Si片表面镀NiTi膜作为碳纳米管生长的催化剂,制备出表面形貌特殊的碳纳米管薄膜,如\"丘状\"和\"星状\"的表面微结构.通过扫描电子显微镜对碳纳米管薄膜的形貌进行表征,采用二极管形式测试了碳纳米管薄膜的场发射性能.实验结果表明,这两种碳纳米管薄膜都具有优异的场发射性能,10μA/cm时的开启电场分别仅为1.02 V/btm和1.15 V/μm,在外加电场为2.4 V/μm时的电流密度分别达到4.32 mA/cm2和6.88 mA/cm2.通过场发射FN的曲线计算得到的场发射增强因子分别为10 113和6 840.这两种碳纳米管薄膜优异的场发射性能与其表面的微结构有关.表面的粗糙结构增强了部分碳纳米管的局域电场,易于发射电子.","authors":[{"authorName":"陈婷","id":"7c7642ec-dc3b-4231-af4c-c7ab002ec8d3","originalAuthorName":"陈婷"},{"authorName":"郭平生","id":"577719f5-7ae7-45a6-b590-ad065dc4b294","originalAuthorName":"郭平生"},{"authorName":"王莉莉","id":"778cb075-a4d3-41ad-a5cf-4ec4b51f89bf","originalAuthorName":"王莉莉"},{"authorName":"冯涛","id":"a3ae1819-5c47-4eb7-a498-f15e14148e56","originalAuthorName":"冯涛"},{"authorName":"陈弈卫","id":"c06c6dac-dcf0-489e-b86e-d434fdaa99e8","originalAuthorName":"陈弈卫"},{"authorName":"张哲娟","id":"ff112e6b-fea3-43ad-89a0-441fa5e4a9f9","originalAuthorName":"张哲娟"},{"authorName":"林丽锋","id":"72570334-d13f-4acc-866f-918aa5ab0a5d","originalAuthorName":"林丽锋"},{"authorName":"阙文修","id":"a7e5eb46-02c1-4d2f-86fe-bdffc4c84479","originalAuthorName":"阙文修"},{"authorName":"孙卓","id":"52437f1e-f688-4bcb-b006-e5087c75c254","originalAuthorName":"孙卓"}],"doi":"10.3969/j.issn.1007-2780.2007.03.010","fpage":"283","id":"24c86780-a2d0-48a2-8c1f-3735f9977315","issue":"3","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"e8a93225-cc5e-4613-901c-008172bc4d34","keyword":"场发射显示","originalKeyword":"场发射显示"},{"id":"eb53d180-d64d-411b-bfd9-e5b8a569fd69","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"0615f964-d38f-4fc0-b711-0e34db72d732","keyword":"场发射","originalKeyword":"场发射"},{"id":"445a125a-39aa-456f-8469-036fd4ceba92","keyword":"表面形貌","originalKeyword":"表面形貌"}],"language":"zh","publisherId":"yjyxs200703010","title":"表面形貌特殊的碳纳米管薄膜及其场发射增强","volume":"22","year":"2007"},{"abstractinfo":"将石墨衬底浸泡于0.5 mol/L Ni(NO3)2溶液中一段时间,之后利用低压化学气相沉积法在不同温度的条件下生长碳纳米管薄膜.研究了碳纳米管的生长温度对其场发射性能的影响.通过扫描电子显微镜和拉曼光谱对生长的碳纳米管薄膜的表征发现,随着碳纳米管的生长温度的增加,碳纳米管的直径与相应拉曼光谱中的G峰和D峰(ID/IG)的峰强比减小.同样,碳纳米管的G峰的半峰宽随着碳纳米管的生长温度的增加而减小,这表明碳纳米管的石墨化程度的增强.实验中发现,碳纳米管的场发射性能依赖于碳纳米管的生长温度.","authors":[{"authorName":"高阳","id":"167598f8-8028-4a4d-8eb7-be0a05ccbb12","originalAuthorName":"高阳"},{"authorName":"张燕萍","id":"c92284f1-46d5-4f8b-bc34-c422e8921a89","originalAuthorName":"张燕萍"},{"authorName":"王莉莉","id":"29062e99-a477-4c21-844e-4f9c5e619568","originalAuthorName":"王莉莉"},{"authorName":"张哲娟","id":"cc1f4853-779e-4fdb-80c3-16d02f627350","originalAuthorName":"张哲娟"},{"authorName":"潘立坤","id":"f1c0391d-548c-4606-b90f-f5679be65cd3","originalAuthorName":"潘立坤"},{"authorName":"陈弈卫","id":"f1ad8428-42d4-4ea2-87c1-cbd199cc2a53","originalAuthorName":"陈弈卫"},{"authorName":"孙卓","id":"0e9e1e9e-4d05-4dd4-b271-0e2642835aaa","originalAuthorName":"孙卓"},{"authorName":"杨介信","id":"cc511002-7240-4188-b46e-1b3bcc4f1cdd","originalAuthorName":"杨介信"}],"doi":"10.3969/j.issn.1007-2780.2007.06.009","fpage":"687","id":"233dc50f-b40c-4883-9e09-b46a5266f6ad","issue":"6","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"797947be-1d9f-473d-a208-c5e3ea715620","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"938908a6-b518-4106-9355-111cca3b6ddf","keyword":"场发射性能","originalKeyword":"场发射性能"},{"id":"281b55a5-fc4f-424a-aeca-bde7c90c266e","keyword":"石墨衬底","originalKeyword":"石墨衬底"},{"id":"81eba61f-6107-49d0-8ad6-944f3dc5fa7a","keyword":"生长温度","originalKeyword":"生长温度"},{"id":"174edfa6-b61f-4ca6-bd58-b7637c3d6a66","keyword":"Ni(NO3)2溶液","originalKeyword":"Ni(NO3)2溶液"}],"language":"zh","publisherId":"yjyxs200706009","title":"浸泡Ni(NO3)2溶液的石墨在不同温度下生长的碳纳米管及其场发射性能","volume":"22","year":"2007"},{"abstractinfo":"电泳法是一种新型的大面积碳纳米管场发射阴极制备方法.文章在成功地用电泳法制备了适用于场发射显示器的碳纳米管阴极基础上,通过选用不同的碳纳米管原料、改变电泳条件等方法,进一步优化碳管阴极的性能.使用不同方法制备的碳纳米管配置电泳液,由于制备方法和碳管本身的特性,管子在电泳溶液中呈现不同的分散性.碳管管径较粗时由于表面自由能相对小,所以碳管在溶液中不易形成团聚物,电泳沉积的阴极会均匀平整;管径小的碳管则由于容易团聚,需要加入表面活性剂来改善其在电泳溶液中的分散性.场发射特性和发光显示图实验结果发现,即使得到相同均匀平整的阴极,但是由于碳管本身的发射能力的差异性最终导致电泳沉积得到的阴极的场发射特性的不同.另外,电泳的实验条件也会对沉积的阴极的场发射性能和形貌产生影响.在不同电泳直流电压条件下,碳管薄膜的密度分布和厚度不同,呈现出不同的场发射能力,结果表明当电压值在25 V时可以得到性能最佳的场发射阴极.","authors":[{"authorName":"王莉莉","id":"a80185fd-1af1-4a62-bac1-629ff6126eb8","originalAuthorName":"王莉莉"},{"authorName":"陈奕卫","id":"c47d3013-ad95-4398-b6a2-9b9c9405305a","originalAuthorName":"陈奕卫"},{"authorName":"陈婷","id":"fda40f60-6e16-4713-b411-574330eeb001","originalAuthorName":"陈婷"},{"authorName":"孙卓","id":"adbe6109-6997-4eae-a3e8-ac407e19ab82","originalAuthorName":"孙卓"},{"authorName":"冯涛","id":"587ec604-bbef-41c3-9db7-1c795f7572fa","originalAuthorName":"冯涛"},{"authorName":"张燕萍","id":"cbf4367a-8010-4f8f-9fa5-7341c1c6a348","originalAuthorName":"张燕萍"},{"authorName":"高阳","id":"f7119cb7-99d1-48b6-9f97-a4eb5cecdc60","originalAuthorName":"高阳"},{"authorName":"阙文修","id":"858f88dc-e1be-4559-a253-2e6e1863b6f9","originalAuthorName":"阙文修"}],"doi":"10.3969/j.issn.1007-2780.2007.06.011","fpage":"701","id":"6ac7968c-81ec-44f4-9b4f-634dc680d2e8","issue":"6","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"468f6bc2-37d9-4cb8-8e72-265b690ff31d","keyword":"场发射材料","originalKeyword":"场发射材料"},{"id":"5f148638-bd61-4ae6-9e30-f48f500d9013","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"24cf0a1b-ff52-41f9-a65a-a1bdf966f6db","keyword":"电泳","originalKeyword":"电泳"},{"id":"6c6b036a-3d99-4f92-a16a-570fb1067c28","keyword":"场发射阴极","originalKeyword":"场发射阴极"},{"id":"d74a628b-ef7a-4859-a347-323e2112e6df","keyword":"电压","originalKeyword":"电压"}],"language":"zh","publisherId":"yjyxs200706011","title":"电泳法制备场发射阴极的性能优化研究","volume":"22","year":"2007"},{"abstractinfo":"石墨衬底先分别浸泡于0.1~1 mol/L不同浓度的硝酸铁溶液后,采用低压化学气相沉积法于700℃在石墨衬底上生长碳纳米管薄膜.根据扫描电子显微镜照片及拉曼光谱分析碳纳米管的形貌和构成.碳纳米管的场发射性能的研究采用标准电流-电压测试.浸泡于0.6 mol/L硝酸铁溶液的石墨片上所生长的碳纳米管的场发射性能最佳.","authors":[{"authorName":"张燕萍","id":"9df85f73-cfcc-4845-a3e9-ad865aab3e56","originalAuthorName":"张燕萍"},{"authorName":"高阳","id":"e83d50a0-90ee-465f-8c19-f8bf753055af","originalAuthorName":"高阳"},{"authorName":"张哲娟","id":"2dd32d68-c9a4-4e00-be58-30a9c5749c37","originalAuthorName":"张哲娟"},{"authorName":"潘丽坤","id":"c9fddc46-9a0a-4770-90ea-f7b709cb99f6","originalAuthorName":"潘丽坤"},{"authorName":"王莉莉","id":"729c2055-20c1-4fb2-97ca-ad5a9fb3bc97","originalAuthorName":"王莉莉"},{"authorName":"孙卓","id":"a502b4f5-f07c-41a7-a388-636112f56a9a","originalAuthorName":"孙卓"},{"authorName":"黄士勇","id":"355c62c5-1417-46d3-bc01-cab834bf6e4d","originalAuthorName":"黄士勇"}],"doi":"10.3969/j.issn.1007-2780.2007.04.002","fpage":"366","id":"9ce3733d-df55-4f2b-8627-05df468df17c","issue":"4","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"19113da6-a7de-475b-a8c0-ecbea3f544c6","keyword":"场发射","originalKeyword":"场发射"},{"id":"b6512b07-c15d-46e4-9a09-d6deb75fbcfa","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"a4093eef-110f-4bf3-803d-9c3e7e09130c","keyword":"硝酸铁浓度","originalKeyword":"硝酸铁浓度"}],"language":"zh","publisherId":"yjyxs200704002","title":"硝酸铁浓度对石墨片上生长的碳纳米管场发射性能的影响","volume":"22","year":"2007"},{"abstractinfo":"采用有限元数值模拟技术,建立了30CrMo钢大直径厚壁压力气瓶在淬火过程中内部温度场、组织相变场和应力应变场相互耦合的数学模型,给出了气瓶在槽内浸水与内表面径向间歇喷雾外表面连续喷水2种淬火工艺下的温度、组织及应力的分布与演化规律。数值模拟研究结果表明,在槽内浸水淬火冷却过程中,气瓶瓶体内外表面温度差异较大,存在较大温度梯度,气瓶在淬火过程中的应力峰值较大,容易引起气瓶发生较大变形,且瓶体不能完全淬透,马氏体转变量较少;气瓶内表面径向间歇喷雾外表面连续喷水淬火工艺可使气瓶的内外表面冷却强度更加合理,进而降低其内外表面的温度梯度,减小其淬火应力峰值,消除其淬火变形,改善其组织分布,从而保证瓶体组织和硬度的均匀性。","authors":[{"authorName":"王葛","id":"d6cdd375-0a4c-432b-9bb1-7ab4b853665b","originalAuthorName":"王葛"},{"authorName":"王莉莉","id":"14c4cbd0-d598-495b-b201-ac7d190bc557","originalAuthorName":"王莉莉"},{"authorName":"高静娜","id":"7e8b89ad-beb1-4ddd-89ae-6a6e130d6bcc","originalAuthorName":"高静娜"},{"authorName":"朱国善","id":"d8984a89-65d7-4aa7-8ea1-7900bfa39206","originalAuthorName":"朱国善"},{"authorName":"杜雄飞","id":"e094567c-7c7a-4a2a-96ca-e33c9109d1a5","originalAuthorName":"杜雄飞"},{"authorName":"李强","id":"88fa0aa5-4cb2-408e-81d3-3f1830817964","originalAuthorName":"李强"}],"doi":"10.13228/j.boyuan.issn0449-749x.20140323","fpage":"61","id":"00ba34d6-9d51-4c98-9596-fee101c1b9b1","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"7e9fcd6a-81a5-4687-ab0c-4d3b9f8a4aca","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"1e10d7f4-1729-49ad-81d9-14c1df7f4c29","keyword":"淬火","originalKeyword":"淬火"},{"id":"0ed4d16d-6d29-486d-96bf-90350c582f4d","keyword":"30CrMo钢","originalKeyword":"30CrMo钢"},{"id":"7e4b604e-9357-444a-a5e9-e057b813daf0","keyword":"压力气瓶","originalKeyword":"压力气瓶"}],"language":"zh","publisherId":"gt201502013","title":"30CrMo钢大直径厚壁压力气瓶淬火过程数值模拟","volume":"","year":"2015"},{"abstractinfo":"以碳酸氢铵为沉淀剂,采用微通道反应与共沉淀法相结合的方法制备出了钇铝石榴石纳米粉体。实验考查了溶液浓度、pH值、Nd3+掺杂等因素对合成纯相YAG纳米粉体的影响。结果表明增大沉淀剂浓度不利于纯相YAG粉体的制备,当沉淀剂浓度为0.4mol/L,Al 3+浓度范围为0.1~0.4mol/L的条件下均得到纯相YAG纳米粉体;采用优化的实验条件,体系pH值维持在8左右,以2%(原子分数)的Nd3+取代YAG中的Y3+,900℃保温4h得到纯相Nd∶YAG粉体,粉体平均粒径在40nm左右,分布均匀,呈近球形。","authors":[{"authorName":"王莉莉","id":"b9fc2014-49d4-40b8-b217-b6cfb9a5854b","originalAuthorName":"王莉莉"},{"authorName":"陈瑾","id":"a2889cea-53b1-418b-9d72-83e08837eb2a","originalAuthorName":"陈瑾"},{"authorName":"杨光成","id":"7096f2cc-26e7-4752-bccc-0ec10e9e1162","originalAuthorName":"杨光成"},{"authorName":"谯志强","id":"46ea6336-2f73-4865-bc2f-1dbbf063ff1f","originalAuthorName":"谯志强"},{"authorName":"聂福德","id":"8481ab8f-e45d-463b-b67a-8f38e4543eb5","originalAuthorName":"聂福德"}],"doi":"","fpage":"2651","id":"0e237472-20b2-4e5a-befb-ae98a49994e4","issue":"19","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"4f24ca4c-0166-4472-8403-0f565ec7e13b","keyword":"微通道反应","originalKeyword":"微通道反应"},{"id":"7972c7b3-dd9a-434e-a6c3-62100ee57b5f","keyword":"共沉淀法","originalKeyword":"共沉淀法"},{"id":"3dbc4047-8138-4294-b1c6-a6055225599c","keyword":"YAG纳米粉体","originalKeyword":"YAG纳米粉体"},{"id":"608e9c34-dfb9-43e5-a8c5-224e68d1da46","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"gncl201219017","title":"微通道反应-共沉淀法制备YAG纳米粉体","volume":"43","year":"2012"},{"abstractinfo":"结合乙烯基酯树脂(VE)浇注体在65℃和95℃蒸馏水中的湿热老化行为,对其炭纤雄复合材料(CF/VE)的吸湿性、静态和动态力学性能进行了对比分析.结果表明,根据VE浇注体的吸湿特性,可将其复合材料的吸湿过程划分为基体吸温为主和界面吸湿为主的两阶段;VE浇注体与其复合材料的弯曲强度的下降趋势一致,均与吸湿率的增加趋势相对应,但VE浇注体的弯曲模量下降较复合材料明显;VE浇注体及其复合材料玻璃化转变温度(Tg)的变化均随时间的延长而降低,并随吸湿达饱和而保持在一定值,但两者内耗峰的变化趋势刚好相反.","authors":[{"authorName":"周同悦","id":"a1c62d5b-6ec2-405b-921f-a5031b52f31a","originalAuthorName":"周同悦"},{"authorName":"于运花","id":"e74a435a-ad3f-4225-809c-f25dd9001c3f","originalAuthorName":"于运花"},{"authorName":"陈伟明","id":"947ac639-9b33-4661-850d-3001b57e6d93","originalAuthorName":"陈伟明"},{"authorName":"王莉莉","id":"cc2b3294-f931-4670-85b5-5ba3ee90b650","originalAuthorName":"王莉莉"},{"authorName":"杨小平","id":"80ee120c-08be-4f21-bc4e-34b897837f27","originalAuthorName":"杨小平"}],"doi":"","fpage":"166","id":"12347c3e-995c-40cb-b4ae-ff6bb760b5ea","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"73c2f8f1-abf8-4125-90bc-aa6a1a61fb67","keyword":"乙烯基酯树脂","originalKeyword":"乙烯基酯树脂"},{"id":"25bcd557-913d-4704-8d84-332c244612c0","keyword":"炭纤维复合材料","originalKeyword":"炭纤维复合材料"},{"id":"d4a07ad9-58a1-4199-8615-0151f58238dd","keyword":"湿热","originalKeyword":"湿热"},{"id":"7728868a-c5fd-4430-a014-1bbb25f7f5db","keyword":"老化","originalKeyword":"老化"}],"language":"zh","publisherId":"gfzclkxygc200605042","title":"乙烯基酯树脂及其炭纤维复合材料的湿热老化行为","volume":"22","year":"2006"},{"abstractinfo":"对4130X钢大直径厚壁压力气瓶采用内外表面喷水淬火冷却工艺方案,并借助计算流体力学软件Fluent,对气瓶在喷水淬火冷却过程中内腔流场和瓶身温度场进行耦合计算;通过设计正交试验,分析了喷孔直径、轴向间距、周向排布和入口流速4个影响因素对气瓶内壁淬火冷却均匀性和气瓶内腔压强分布的影响,给出了这4个影响因素对正交试验指标影响的主次顺序,并确定了这4个影响因素的优组合;依据这四个影响因素的优组合,建立了气瓶的数值模拟计算模型,分析了气瓶在喷水淬火冷却过程中内表面换热特性、内腔气雾流动特性和内腔压强分布特性.该淬火工艺方案能保证气瓶淬透,并改善淬火质量,研究结果能够用来指导4130X钢大直径厚壁压力气瓶的淬火工艺制定.","authors":[{"authorName":"王葛","id":"7608d2c2-2ebf-456b-b0b3-cee003fc9072","originalAuthorName":"王葛"},{"authorName":"朱国善","id":"f5cc266d-68fa-4c18-9f1b-86d6e561b03a","originalAuthorName":"朱国善"},{"authorName":"高静娜","id":"f0b84f4d-2a30-444f-be85-2155b6e08ef5","originalAuthorName":"高静娜"},{"authorName":"王莉莉","id":"90fb2a59-0ca9-40e8-9e9a-afec9984e33d","originalAuthorName":"王莉莉"},{"authorName":"杜雄飞","id":"5f23ba1d-7ed5-4897-be72-22ea72dc26a0","originalAuthorName":"杜雄飞"},{"authorName":"李强","id":"9149e7c0-eb3d-47a2-bdf1-83cfa41d2dbd","originalAuthorName":"李强"}],"doi":"","fpage":"250","id":"548acae4-a550-4adc-b284-a010a15fdcf7","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"c586eb24-e63a-4d53-aa2e-2a65a7ffb7a5","keyword":"压力气瓶","originalKeyword":"压力气瓶"},{"id":"39aeb429-5d1a-4db1-894f-e801638521f3","keyword":"淬火","originalKeyword":"淬火"},{"id":"e88656dc-cbc7-4cc7-9eda-c888be716912","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"2fa2f548-afdd-4cbe-8d3d-f612e239522a","keyword":"喷水冷却","originalKeyword":"喷水冷却"},{"id":"51295019-9088-4264-af58-3ea4a7f34008","keyword":"射流沸腾","originalKeyword":"射流沸腾"}],"language":"zh","publisherId":"jsrclxb201507042","title":"4130X钢大直径厚壁压力气瓶喷水淬火数值模拟","volume":"36","year":"2015"}],"totalpage":9,"totalrecord":82}