{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用钛酸丁酯水解和肼还原醋酸铜的方法制备出TiO2-Cu2O复合氧化物,研究了TiO2-Cu2O复合光催化剂在可见光照射下光催化降解活性艳红X-3B的性能,考察了催化剂组成、催化剂投加量、溶解氧、H2 O2等对光催化反应的影响,探讨了Cu2O及TiO2-Cu2O光催化降解有机污染物的机理.结果表明,由于TiO2和Cu2O之间存在协同作用,使得复合氧化物的活性比单一的Cu2O高.Cu2O光催化的氧化物种为·OH和光生空穴.光生电子(e-)还原吸附在Cu2O表面上的氧,产生超氧阴离子,然后再进一步生成·OH,光生空穴(h+)无法直接将吸附在Cu2O表面的OH-氧化成·OH.","authors":[{"authorName":"韩承辉","id":"e7648581-b87b-4fa5-acf5-d2650b9f76a6","originalAuthorName":"韩承辉"},{"authorName":"李智渝","id":"0c9e07a5-157f-43d1-8d80-b31b8d71a3d3","originalAuthorName":"李智渝"},{"authorName":"沈俭一","id":"42dbd886-9c53-4a35-9b9b-bb1123b042b0","originalAuthorName":"沈俭一"}],"doi":"","fpage":"4","id":"ed1e1a0c-1799-4411-924b-2fb3bf742370","issue":"14","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c45c84c2-6022-40fd-94de-969c27099f50","keyword":"纳米Cu2O","originalKeyword":"纳米Cu2O"},{"id":"7f49ac2b-4293-4c47-b59f-d2d45b614716","keyword":"TiO2-Cu2O复合氧化物","originalKeyword":"TiO2-Cu2O复合氧化物"},{"id":"84b18c81-ec20-4940-b325-a84c113e518e","keyword":"活性艳红X-3B","originalKeyword":"活性艳红X-3B"},{"id":"ef917c33-fce8-4422-9982-a7c784e467b1","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"cldb201414002","title":"纳米TiO2-Cu2O可见光下光催化降解活性艳红及其机理研究","volume":"28","year":"2014"},{"abstractinfo":"用柠檬酸盐法合成出组成为xBaO·(0.35-x)Nd2O3·0.65TiO2复合氧化物,采用DTA-TG,IR,XRD,TEM进行物性表征.实验结果表明:该复合氧化物的形成温度为800℃,平均粒径为30nm.在富TiO2区,BaO/Nd2O3≤0.4时,成瓷温度较宽(1280~1360℃),制得的瓷料具有优良的介电性能.","authors":[{"authorName":"宋宽秀","id":"a3c930c7-599f-41e0-9e61-fe939ecb49ca","originalAuthorName":"宋宽秀"},{"authorName":"谭俊茹","id":"52ad97cf-4f0e-47af-bb9f-ce7010bde3c0","originalAuthorName":"谭俊茹"},{"authorName":"颜秀茹","id":"952f1a77-19f9-4b7c-a159-fbd5c7843ab2","originalAuthorName":"颜秀茹"},{"authorName":"辛春伟","id":"d234c710-e46c-40b9-9e46-35ad1d8bfe8b","originalAuthorName":"辛春伟"},{"authorName":"王建萍","id":"b96f052e-1b81-469b-b2d6-9e1481613e35","originalAuthorName":"王建萍"}],"doi":"10.3969/j.issn.1001-1625.2002.05.009","fpage":"37","id":"b8dbe5c1-3a13-4cc1-a79c-81cefc4aaf92","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"c64e5d0f-e2ba-4db2-9771-a262e6fb3790","keyword":"柠檬酸盐法","originalKeyword":"柠檬酸盐法"},{"id":"33a1f5d0-8be4-4da7-a457-2b04abff6c05","keyword":"复合氧化物","originalKeyword":"复合氧化物"},{"id":"dc2b5f70-9229-4b85-9cf8-7304004493d8","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"gsytb200205009","title":"纳米xBaO·(0.35-x)Nd2O3·0.65TiO2复合金属氧化物陶瓷的制备与介电性能","volume":"21","year":"2002"},{"abstractinfo":"采用共沉淀法制备了TiO2-ZrO2复合氧化物和单一的TiO2、ZrO2粉体,不同温度下煅烧后得到样品.用N2吸附、X-射线衍射仪、热重-差示扫描量热法对样品进行了表征.考察了单一组分与复合氧化物结构性能的差别以及煅烧温度对复合氧化物性能的影响.结果表明:550 ℃煅烧2 h后,单一TiO2、ZrO2分别是结晶良好的锐钛矿和单斜相(含少量四方相),而TiO2-ZrO2复合氧化物依然是无定型结构且具有较大的比表面积(190.15 m2/g).600 ℃煅烧后TiO2-ZrO2复合氧化物中出现了ZrTiO4晶型.随煅烧温度的升高,复合氧化物的比表面积出现了明显的下降(190.15~19.16 m2/g).DSC-TG曲线给出了TiO2、ZrO2以及TiO2-ZrO2的相转变温度,分别为440.2 ℃、445.7 ℃、713.5 ℃.","authors":[{"authorName":"张延东","id":"f1c9e82e-de67-4745-845c-3ea2091c1bfd","originalAuthorName":"张延东"},{"authorName":"李慧远","id":"36048cae-248b-4323-bfb0-095c3ff3011e","originalAuthorName":"李慧远"},{"authorName":"张利民","id":"14ce4ada-3ffa-4404-859b-dd9e768e16d4","originalAuthorName":"张利民"},{"authorName":"王志良","id":"4bcad9f2-fa55-45d3-86fd-ad2004b21a01","originalAuthorName":"王志良"},{"authorName":"沈树宝","id":"8bead9d2-4984-4603-af1d-7c7b99f85f37","originalAuthorName":"沈树宝"},{"authorName":"祝社民","id":"089c00b0-d55b-4a70-9023-50397bba3678","originalAuthorName":"祝社民"}],"doi":"","fpage":"894","id":"d2aeef1e-1bad-40ad-94ad-869cd8d9ee5c","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"550dad72-6902-4dd3-843e-f5785bf438d6","keyword":"共沉淀法","originalKeyword":"共沉淀法"},{"id":"fde73ad7-bceb-482c-b7e7-7204639aaa84","keyword":"TiO2-ZrO2复合氧化物","originalKeyword":"TiO2-ZrO2复合氧化物"},{"id":"4a03b4ea-9766-4f00-9985-bed184591ca1","keyword":"比表面积","originalKeyword":"比表面积"},{"id":"906b428d-3106-422e-a35a-17c3fc99afe1","keyword":"相转变温度","originalKeyword":"相转变温度"}],"language":"zh","publisherId":"gsytb200805002","title":"TiO2-ZrO2复合氧化物的制备与表征","volume":"27","year":"2008"},{"abstractinfo":"报道了压电材料PZT中掺杂超导粉Y0.9Ca0.1Ba2Cu4O8,而超导粉中又有Ag2O的掺杂.这种复合氧化物陶瓷的制备方法及电导率的测试结果,表明材料具有很强的NTC 效应.","authors":[{"authorName":"白炳贤","id":"bd083b7e-4ab8-4153-953a-cd9105a14c73","originalAuthorName":"白炳贤"},{"authorName":"靳建华","id":"0deaa955-f440-47a6-a9db-cfba4213c92d","originalAuthorName":"靳建华"},{"authorName":"白涛","id":"d5b01985-5198-4e95-b770-baa34ebc5571","originalAuthorName":"白涛"},{"authorName":"徐新生","id":"105cf36d-babb-4e5b-85a7-d5f4eb4c3901","originalAuthorName":"徐新生"}],"doi":"","fpage":"107","id":"cb4e3ad3-fc4b-4bbf-a8b4-c16ce247be06","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"2f614a52-ef86-45d5-bcb1-8551a6fea2b0","keyword":"复合氧化物","originalKeyword":"复合氧化物"},{"id":"f518c762-5271-4954-bf25-ef8712ad510e","keyword":"NTC效应","originalKeyword":"NTC效应"},{"id":"9f51cce2-8594-4976-a550-0105b108f41f","keyword":"电导率","originalKeyword":"电导率"}],"language":"zh","publisherId":"gncl200001039","title":"PZT/Y0.9Ca0.1Ba2Cu4O8及Ag2O掺杂的复合氧化物陶瓷的NTC效应","volume":"31","year":"2000"},{"abstractinfo":"采用溶胶-凝胶法制备了一系列不同n(Ce)/n(Ti)的CeO2-TiO2复合氧化物,对复合氧化物的物相结构、形貌特征、比表面积和氧化还原性质进行了表征,并考察了复合氧化物对CO氧化反应的催化性能.结果表明,n(Ce)/n(Ti)>0.10时,复合氧化物为无定形结构;n(Ce)/n(Ti)=0.10~0.30时,复合氧化物失去CeO2和TiO2各自的特征,形成CeO2-TiO2固溶体,具有较大的比表面积.CeO2-TiO2复合氧化物本身对CO氧化反应的催化活性不如TiO2或CeO2的高,但Pd/CeO2-TiO2比Pd/TiO2或Pd/CeO2具有更高的催化活性.","authors":[{"authorName":"梁飞雪","id":"601aee5d-d99a-4498-8dee-b21925f18cee","originalAuthorName":"梁飞雪"},{"authorName":"朱华青","id":"17eba910-be27-4e48-ab80-2dc4104ca1bf","originalAuthorName":"朱华青"},{"authorName":"秦张峰","id":"05923169-9b04-4cd9-928e-3f5ad4fd88da","originalAuthorName":"秦张峰"},{"authorName":"王辉","id":"f39139c1-0e0e-4275-bfc5-9af0407e5a67","originalAuthorName":"王辉"},{"authorName":"王国富","id":"9ecbd584-3f84-48b2-9a75-9fe195106041","originalAuthorName":"王国富"},{"authorName":"王建国","id":"648c963b-ef05-4e21-9007-8446799beeba","originalAuthorName":"王建国"}],"doi":"","fpage":"264","id":"f7d3956d-5149-4726-a943-171bda54b4e8","issue":"3","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"33f22c2a-4fd9-4588-987b-fbfeb55445b3","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"2eeff50b-27f3-4685-aea9-ed609c538543","keyword":"二氧化铈","originalKeyword":"二氧化铈"},{"id":"d9210e8a-d46b-4ad3-9a07-4a10cd47bba7","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"761b06f7-319e-49ba-b454-d1947ada0afc","keyword":"复合氧化物","originalKeyword":"复合氧化物"},{"id":"8c3ecc3c-bbf8-4f8b-9ae8-b5264c30ff1f","keyword":"钯","originalKeyword":"钯"},{"id":"ab4a5242-a6c6-4eea-af2d-57804e8f4ab3","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"cdb39ef7-acc6-4699-94ff-c55f8f43af16","keyword":"一氧化碳","originalKeyword":"一氧化碳"},{"id":"887452e3-b978-4fd3-882a-14713eb0370b","keyword":"氧化反应","originalKeyword":"氧化反应"}],"language":"zh","publisherId":"cuihuaxb200803014","title":"CeO2-TiO2复合氧化物的制备、表征及其对CO氧化的催化性能","volume":"29","year":"2008"},{"abstractinfo":"采用NaOH沉淀法制备了TiO2/Bi2O3纳米粒子,用TG-DTA、UV-vis、XRD、XPS等对其结构、性质进行表征,并以甲苯为气相有机污染物对TiO2/Bi2O3光化学催化剂的气-固复相反应活性进行了研究.发现TiO2的加入可以阻碍Bi2O3晶粒的生长,从而导致粒径的减小.光生电子产生于Bi2O3并迁移到TiO2表面,使所需的激发光频率变低,从而使半导体的吸光波长向可见光区域扩展,表明复合TiO2能够提高Bi2O3的光催化活性,并且活性的提高程度与n(Ti):n(Bi)有关,其最佳配比为0.03:1;光催化活性随焙烧温度升高而增大,750℃焙烧的样品光催化活性最好.","authors":[{"authorName":"丁鹏","id":"dcb63eec-7574-460a-9605-8c6de59ffddc","originalAuthorName":"丁鹏"},{"authorName":"贾欣茹","id":"ebc4ed2b-32d8-4ea9-95c0-0718f75d0b64","originalAuthorName":"贾欣茹"},{"authorName":"唐艳茹","id":"7e9f9cdc-f19a-45d9-b9fd-bcf571fdc30b","originalAuthorName":"唐艳茹"},{"authorName":"杜尧国","id":"823b0e99-a3ad-4ec4-8f7c-a8e815584e3b","originalAuthorName":"杜尧国"},{"authorName":"徐自力","id":"7cb15922-9464-4ffe-a407-2e675561a9cf","originalAuthorName":"徐自力"}],"doi":"","fpage":"1468","id":"8e45ddd3-c076-451b-95e1-f6d32ad69a5e","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"185322db-1e16-4194-ac5b-94b18565299f","keyword":"TiO2/Bi2O3","originalKeyword":"TiO2/Bi2O3"},{"id":"0409e272-4ff4-4e38-b6ed-f0d6f1387c73","keyword":"表征","originalKeyword":"表征"},{"id":"142a8dc1-5abd-4541-957b-17d17493303e","keyword":"甲苯","originalKeyword":"甲苯"},{"id":"57d887cd-1ad0-4f96-b6af-625c8e00955d","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"gncl200709022","title":"复合氧化物TiO2 /Bi2O3对甲苯的光催化作用","volume":"38","year":"2007"},{"abstractinfo":"本文以廉价的无机盐为原料,采用sol-gel法制备了Ce:Ti(摩尔比)为0.05~0.4:1之间的一系列CeO2-TiO2复合氧化物. 利用物理吸附仪,XRD,TEM等手段对复合氧化物的织构和结构性质进行了表征. 结果发现:采用无机盐-超临界流体干燥法可制备大孔、高比表面积的CeO2-TiO2复合氧化物,随着CeO2含量从5%增加到40%,复合氧化物的比表面积由67.3m2·g-1增加到219.4m2·g-1;物相由锐钛矿转变为无定形;粉体的粒径、形貌也随之变化,由颗粒状逐渐变为网络结构. 而与超临界流体干燥得到的气凝胶相比,采用普通干燥法制备得到的复合氧化物具有较低的孔体积和比表面积,颗粒间团聚较严重,但无\"孤岛\"状大颗粒,晶相为无定型结构.","authors":[{"authorName":"董国利","id":"9d34cde7-5de9-4682-a4d5-00fafdd5ac73","originalAuthorName":"董国利"},{"authorName":"王建国","id":"e0eb6556-ba4e-4f30-af8f-9d48a2693985","originalAuthorName":"王建国"},{"authorName":"高荫本","id":"a2e997d0-76c3-4832-b820-41efe136ac87","originalAuthorName":"高荫本"},{"authorName":"陈诵英","id":"fef4a96c-5169-4912-8551-b0f6373908dc","originalAuthorName":"陈诵英"}],"doi":"10.3321/j.issn:1000-324X.1999.06.007","fpage":"873","id":"be317eee-ce80-46ac-869e-faea402175d5","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"882e7d91-f8fb-4663-976d-c38d30ee90d3","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"31e29137-d816-49ed-a8d0-c71d1601d292","keyword":"超临界流体干燥","originalKeyword":"超临界流体干燥"},{"id":"ba26c030-277f-4ca9-b815-ef8b62faa6f1","keyword":"普通干燥","originalKeyword":"普通干燥"},{"id":"cfdd7284-18d7-4228-8b56-8cc11fd84409","keyword":"CeO2-TiO2复合氧化物","originalKeyword":"CeO2-TiO2复合氧化物"}],"language":"zh","publisherId":"wjclxb199906007","title":"CeO2-TiO2复合氧化物的制备及其表征","volume":"14","year":"1999"},{"abstractinfo":"采用溶胶-凝胶法制备了介孔TiO2-Al2O3复合氧化物载体,考察了载体的焙烧温度对负载型Au-Pd双金属催化剂加氢脱硫性能的影响,并采用X射线衍射、吸附吡啶的程序升温脱附、程序升温还原、红外光谱和N2物理吸附等技术对载体及催化剂进行了表征. 结果表明,不同温度焙烧的TiO2-Al2O3复合载体都具有介孔结构,其中773 K焙烧制得的TiO2-Al2O3复合载体的比表面积和孔容较大, B酸中心较多,以其为载体的Au-Pd 催化剂具有较好的加氢脱硫活性. 表征结果表明, 773 K焙烧制得的Au-Pd/TiO2-Al2O3催化剂中Au-Pd活性组分与载体的相互作用较强,催化剂上形成的AuxPdy合金的晶粒较小且数量较多,催化剂的酸量和活性组分的分散度较大,并且其上进行的加氢脱硫反应的活化能较低,这些因素均有利于催化剂活性的提高.","authors":[{"authorName":"顾忠华","id":"5bfd01d8-90c8-4872-811b-9923d0216ada","originalAuthorName":"顾忠华"},{"authorName":"罗来涛","id":"b4542f93-c222-49a0-9287-7fe904c85c2d","originalAuthorName":"罗来涛"},{"authorName":"夏梦君","id":"27b73fe2-2a37-4914-acb3-6e422f0b7ab5","originalAuthorName":"夏梦君"},{"authorName":"李茂康","id":"41eb59d4-b3e9-453f-bc2d-edd49ca12426","originalAuthorName":"李茂康"}],"doi":"","fpage":"719","id":"3f8fff10-f684-491f-b0b5-c092d4fbdd0e","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"577d58c3-d61d-4a45-b900-083110d0eca6","keyword":"金","originalKeyword":"金"},{"id":"f7115dd8-f77b-434a-a104-7d0172a1345b","keyword":"钯","originalKeyword":"钯"},{"id":"635a63f1-8e03-4389-972e-8fdc9e35f54b","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"da772612-b935-476c-abe7-3eaa10e61f0f","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"f4244297-49a8-4148-9a35-71418e8aaacd","keyword":"复合氧化物载体","originalKeyword":"复合氧化物载体"},{"id":"bcf55e41-6940-464f-af2e-b571592b3723","keyword":"焙烧温度","originalKeyword":"焙烧温度"},{"id":"db3fc34d-181b-4f8d-97b1-b9055e64a44c","keyword":"加氢脱硫","originalKeyword":"加氢脱硫"}],"language":"zh","publisherId":"cuihuaxb200608015","title":"TiO2-Al2O3复合氧化物载体焙烧温度对Au-Pd催化剂加氢脱硫性能的影响","volume":"27","year":"2006"},{"abstractinfo":"构建了TiO2-SiO2复合氧化物晶胞结构,采用HyperChem量子化学程序中的从头计算方法以3-21G*基组对其进行了全优化计算,并进行了振动分析,预测了TiO2-SiO2复合氧化物各化学键的红外特征吸收频率.采用IR谱对TiO2-SiO2复合氧化物进行了表征,通过理论计算与实验数据相结合的方法确定了TiO2-SiO2复合氧化物的分子结构,对其平衡几何构型、IR谱、电子结构和Lewis酸性进行了讨论.","authors":[{"authorName":"赵亮","id":"16a148ef-1556-40dc-913c-991d63ef5309","originalAuthorName":"赵亮"},{"authorName":"王大喜","id":"338f7128-e0d9-4909-a0dc-d55bc6f80e37","originalAuthorName":"王大喜"},{"authorName":"高金森","id":"cfa15730-ba18-4f6a-88c0-449417ec71d7","originalAuthorName":"高金森"},{"authorName":"徐春明","id":"5e86a9f4-82dc-48ed-8c2e-d025c00fb729","originalAuthorName":"徐春明"}],"doi":"","fpage":"15","id":"24950ab2-fceb-45b9-aaa4-4c371a6862f2","issue":"1","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"b4dfae4c-0241-47a6-b562-0db331dd416c","keyword":"量子化学","originalKeyword":"量子化学"},{"id":"fef92c6c-9a7d-42b6-bc92-37ad1d9a6e8c","keyword":"红外光谱","originalKeyword":"红外光谱"},{"id":"2df4ac43-9d8e-47a1-9b46-a9d6783fb47a","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"e152d6ff-ef9c-4026-889e-610e920e9375","keyword":"二氧化硅","originalKeyword":"二氧化硅"},{"id":"f549c366-727c-4b73-8bb8-9e99fb191f8b","keyword":"复合氧化物","originalKeyword":"复合氧化物"},{"id":"12df53fb-9630-48f7-8831-8451c836a510","keyword":"几何构型","originalKeyword":"几何构型"}],"language":"zh","publisherId":"cuihuaxb200501005","title":"TiO2-SiO2复合氧化物结构和红外光谱的量子化学研究","volume":"26","year":"2005"},{"abstractinfo":"为适应从低温到高温宽温范围的使用条件,用溶胶-凝胶法制备了YBa2Cu3O7-δ超导材料,用摩擦磨损试验机测试了YBa2Cu3O7-δ从室温至液氮温度的摩擦学性能.结果表明:室温20℃下,YBa2Cu3O7-δ与对偶件不锈钢盘对摩时,摩擦因数在0.5左右,当温度降到超导转变温度以下时(液氮温度-196℃)摩擦因数大幅度降低,YBa2Cu3O7-δ超导态摩擦因数是正常态值的一半,实验直接证明了电子激励对摩擦能量耗散的作用.为改善室温下YBa2Cu3O7-δ摩擦学性能,掺杂不同质量分数PbO作为润滑组元,制备了PbO/YBa2Cu3O7-δ超导固体润滑复合材料,取得良好效果.PbO掺杂不影响PbO/YBa2Cu3O7-δ复合材料的超导电性,在正常的载荷和滑行速度下15%PbO/YBa2Cu3O7-δ复合材料摩擦因数为0.2至0.3,磨损率为4.35×10-4mm3·(N·m)-1,分析了PbO/YBa2Cu3O7-δ复合材料减摩耐磨机制.","authors":[{"authorName":"董丽荣","id":"8e9fd793-cdcf-42ca-8927-b4ed7451d415","originalAuthorName":"董丽荣"},{"authorName":"李长生","id":"b712329b-aeb2-455d-9925-64c39804fc88","originalAuthorName":"李长生"},{"authorName":"丁巧党","id":"fed9b404-6239-4705-8663-a1d10c2e5341","originalAuthorName":"丁巧党"},{"authorName":"王旻璐","id":"54f6472e-a557-4660-8736-812b0432a0cf","originalAuthorName":"王旻璐"},{"authorName":"彭义","id":"b6746546-554f-4e8a-be8c-98c7301c4ed8","originalAuthorName":"彭义"}],"doi":"10.3321/j.issn:1000-3851.2008.04.026","fpage":"143","id":"a0bc3bd0-23d2-48f8-a616-43907c1fd7a4","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"52422302-3aca-4394-8144-cc5efcbd2eb5","keyword":"YBa2Cu3O7-δ","originalKeyword":"YBa2Cu3O7-δ"},{"id":"3a38bfc7-8e4a-4fb7-ad92-0538e9771b91","keyword":"PbO","originalKeyword":"PbO"},{"id":"5a9d3c55-1c2e-4050-aee3-dcc50741ec9e","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"f9c2adf0-2e7a-4632-86fb-db42e4e98f4b","keyword":"超导转变","originalKeyword":"超导转变"},{"id":"facffb6c-1513-4473-83a4-10dcf821b86b","keyword":"摩擦学性能","originalKeyword":"摩擦学性能"}],"language":"zh","publisherId":"fhclxb200804026","title":"超导PbO/YBa2Cu3O7-δ复合氧化物摩擦磨损性能","volume":"25","year":"2008"}],"totalpage":13153,"totalrecord":131526}