{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过多种溶剂或其混合溶剂为水热反应媒介,制备出多种形貌和尺寸的纳米HgMoO4.SEM观察结果显示,当仅以水为水热合成媒介时,所合成的HgMoO4为由许多纳米棒(长~ 750 nm, 宽~150 nm)组成的不规则纺锤状结构.当无水乙醇或聚乙烯醇被引入该合成体系时,产物呈球形花状或蝴蝶结状结构.当进一步引入油酸时,体系则转变成由无数厚~100 nm的薄片形成的花状结构.XRD结果表明,上述溶剂体系所得HgMoO4均为单斜晶系的黑钨矿结构.红外光谱亦进一步证实了其结构.与体相材料相比,所得纳米HgMoO4的荧光发射峰均发生了一定程度的蓝移,体现了纳米材料的量子尺寸效应.","authors":[{"authorName":"贾润萍","id":"a17c6653-e2a2-4614-a712-07ab1204917f","originalAuthorName":"贾润萍"},{"authorName":"张英强","id":"80a41ae6-fc8d-4473-85fa-177977b47988","originalAuthorName":"张英强"}],"doi":"","fpage":"1078","id":"ed8537cc-46c1-482c-bb74-4ee275e78af2","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"9b30f28e-9951-4976-bbc3-9e87f5610759","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"f0ebd42e-cd92-41d7-8851-296ec46f78ec","keyword":"溶剂","originalKeyword":"溶剂"},{"id":"19030d3c-355e-4374-a013-19e0298ec2b2","keyword":"纳米HgMoO4","originalKeyword":"纳米HgMoO4"}],"language":"zh","publisherId":"rgjtxb98201004049","title":"纳米HgMoO4的水热合成与表征","volume":"39","year":"2010"},{"abstractinfo":"用干法室温振动研磨方法制备纳米Zn粉,化学沉淀法制备纳米Fe3O4,纳米Zn和Fe3O4水解制备纳米ZnFe2O4.TEM和XRD检测显示经11h研磨的Zn粉粒度分布在10~20nm之间,纳米Fe3O4的粒度分布在20nm左右,水解产物纳米ZnFe2O4,形貌为方形片状,粒子尺度约为20nm.研究结果表明纳米Zn/Fe3O4摩尔比为1.5:1,反应温度为300℃是最佳反应条件,可见用振动研磨方法制备的纳米Zn颗粒具有优良的性能,能使化学反应在较低温度下快速完成,且制备方法简单易行,便于批量化生产.","authors":[{"authorName":"徐波","id":"548aa809-9fb3-403d-9abc-92e0b8b2fa1d","originalAuthorName":"徐波"},{"authorName":"王树林","id":"c6d2b604-6542-475e-9f44-d21c55bc5764","originalAuthorName":"王树林"},{"authorName":"李生娟","id":"7d3c23d2-c145-40c5-ae52-8f24b93d1bff","originalAuthorName":"李生娟"},{"authorName":"李来强","id":"83733be0-caeb-4ebd-bb7c-725801d35e55","originalAuthorName":"李来强"}],"doi":"","fpage":"1929","id":"4bdea62c-9f7a-41ba-a586-954d1496dd33","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ffce8a21-0e2d-46bd-8461-0d4b3f33e0f8","keyword":"纳米Zn","originalKeyword":"纳米Zn"},{"id":"6b76ef10-008c-473d-80b3-dd211d5041cd","keyword":"纳米Fe3O4","originalKeyword":"纳米Fe3O4"},{"id":"8844aa4b-2838-44c9-8f0b-1db3af919799","keyword":"水解反应","originalKeyword":"水解反应"},{"id":"b207f5a0-ee5b-4714-b5cf-8e7835c5d438","keyword":"纳米ZnFe2O4","originalKeyword":"纳米ZnFe2O4"}],"language":"zh","publisherId":"gncl201011020","title":"纳米Zn/Fe3O4水解制备纳米ZnFe2O4","volume":"41","year":"2010"},{"abstractinfo":"制备了酞菁镍(NiPc)-Fe3O4纳米复合粒子,研究了其化学稳定性和磁性能.结果表明,NiPc在Fe3O4纳米粒子表面形成了复合层,并且它们之间形成了一定程度的化学键.NiPc复合层可有效地保护Fe3O4纳米粒子不被空气氧化,显著提高了其抗氧化能力,并降低了其矫顽力.","authors":[{"authorName":"黄俊","id":"abaea3b4-bffa-4889-9f94-1b256b40faad","originalAuthorName":"黄俊"},{"authorName":"官建国","id":"18d22fce-3771-4f69-a60d-7accd8006c7d","originalAuthorName":"官建国"},{"authorName":"袁润章","id":"dc233e6d-8aec-435a-aaa1-88c0e7da6943","originalAuthorName":"袁润章"}],"doi":"10.3321/j.issn:1000-3851.1999.04.007","fpage":"35","id":"eaeab2f7-df63-49b7-8dbb-3d4f8113ca50","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"cfff3734-1d0d-4b83-9cda-eaf4949d84e9","keyword":"酞菁镍","originalKeyword":"酞菁镍"},{"id":"5af385bd-3739-4814-a853-85dd4bdbfca4","keyword":"纳米复合粒子","originalKeyword":"纳米复合粒子"},{"id":"2664a3d1-fde0-429f-9df3-a2768e79b929","keyword":"抗氧化","originalKeyword":"抗氧化"},{"id":"142ffba9-269c-4a08-b294-f714c86f1049","keyword":"Fe3O4","originalKeyword":"Fe3O4"}],"language":"zh","publisherId":"fhclxb199904007","title":"Fe3O4纳米复合粒子研究","volume":"16","year":"1999"},{"abstractinfo":"采用一种简单又经济的方法将Fe3O4纳米颗粒填充到碳纳米管中.透射电镜(TEM)、扫描电镜(SEM)及其能谱附件(EDX)和X射线多晶衍射(XRD)测试结果表明:Fe3O4纳米颗粒成功地填充到碳纳米管中.材料的磁性能测试结果表明:碳纳米管中填充Fe3 O4纳米颗粒后,在常温下具有超顺磁性,其饱和磁化强度由0.35emu/g增大到了13.15emu/g.Fe3O4纳米颗粒填充的碳纳米管可望应用于工程和医学领域.","authors":[{"authorName":"李建华","id":"983d19aa-9e67-438f-8875-de0d6ca2ec68","originalAuthorName":"李建华"},{"authorName":"洪若瑜","id":"d96a4bc3-120a-4373-84cf-a5f28611cb64","originalAuthorName":"洪若瑜"},{"authorName":"罗国华","id":"6c7e1cbc-0b6a-4c42-93d9-2feb1c97b1fd","originalAuthorName":"罗国华"},{"authorName":"郑莹","id":"995f0fb6-95f1-434a-9cff-593ca0dcc1e3","originalAuthorName":"郑莹"},{"authorName":"李洪钟","id":"f6936840-6fba-4616-bdc0-c8c0d5e213c4","originalAuthorName":"李洪钟"},{"authorName":"尉东光","id":"a9b818e8-f50e-481a-be2e-fbfcfc043c3e","originalAuthorName":"尉东光"}],"doi":"10.1016-S1872-5805(09)60026-3","fpage":"192","id":"3abfe515-b268-448e-8960-0858b38f177d","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"80cfa428-f20c-4948-adf7-762372256749","keyword":"Fe3O4","originalKeyword":"Fe3O4"},{"id":"48ebc2d6-05fc-40e7-aa3b-8b89dc434350","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"945ed2b4-5a5d-489d-a9bc-dba8c252d85d","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"14a0bfe6-6c93-491e-baa2-276b48c46c9e","keyword":"磁性能","originalKeyword":"磁性能"},{"id":"8b26b1f9-b8d0-4aaf-be20-1878528af6d4","keyword":"饱和磁化强度","originalKeyword":"饱和磁化强度"}],"language":"zh","publisherId":"xxtcl201003006","title":"碳纳米管承载纳米Fe3O4颗粒的制备","volume":"25","year":"2010"},{"abstractinfo":"采用湿化学沉淀法制备纳米Fe3O4粉体.借助TEM、XRD、比表面、zeta电位及粒度分析等手段,研究了反应物浓度、pH值、分散剂等对纳米Fe3O4粉体制备及分散的影响.结果表明:随反应物浓度的增加,纳米Fe3O4的粒度增大,分布范围变宽;pH值决定粉体所带电荷的种类和多少,从而影响粉体的分散和稳定;FeCl3对纳米Fe3O4的分散具有较好的效果.","authors":[{"authorName":"朱海涛","id":"26cebd2f-35b2-48e3-81ad-c0baaa0602d1","originalAuthorName":"朱海涛"},{"authorName":"张灿英","id":"b21773ba-b849-4303-b72e-07e2ccf27b6d","originalAuthorName":"张灿英"},{"authorName":"胡正水","id":"b1e58855-184a-4b67-bdb7-20b2427c5324","originalAuthorName":"胡正水"},{"authorName":"尹衍升","id":"099ee9d5-9128-406c-a9fa-c3287b295d58","originalAuthorName":"尹衍升"}],"doi":"","fpage":"62","id":"38049e94-aa15-46a9-9bfa-ec9507849334","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5024ca7d-67a9-48b5-8e83-58e5172a9e71","keyword":"Fe3O4","originalKeyword":"Fe3O4"},{"id":"3574a356-2708-49d8-878d-ec2eef947662","keyword":"纳米粉体","originalKeyword":"纳米粉体"},{"id":"003a9a17-4a66-41c6-ac30-eb4150d09cc4","keyword":"制备","originalKeyword":"制备"},{"id":"7ee971cf-7db4-43e8-95ab-33fcb594ff80","keyword":"分散","originalKeyword":"分散"}],"language":"zh","publisherId":"xyjsclygc2005z1018","title":"纳米Fe3O4的制备及分散","volume":"34","year":"2005"},{"abstractinfo":"采用反相微乳液法和溶剂热法制备了SrWO_4纳米材料,探讨了反应条件对产物的结构和形貌的影响,采用X射线衍射(XRD)、场发射扫描电镜(FESEM)和光致发光(PL)谱等手段表征了产物结构、形貌,测试了发光性能.结果表明,采用微乳液法制备SrWO_4材料时,反应时间和表面活性剂浓度是影响SrWO_4产物形貌的重要因素,通过改变这2个因素得到了不同形貌的SrWO_4纳米材料,如菜花状、树杈状、花束状等.而溶剂热法只得到SrWO_4纳米颗粒.室温PL谱表明,所制备的SrWO_4材料具有较强的绿光(400~450nm)发射光谱.","authors":[{"authorName":"邢光建","id":"4623f0bd-272c-4b71-af2f-621d866d67ec","originalAuthorName":"邢光建"},{"authorName":"李钰梅","id":"2585a212-6ea9-482c-8033-da3d93b7c1e9","originalAuthorName":"李钰梅"},{"authorName":"李永良","id":"41916d1f-daeb-4b86-b967-9882f6f6652c","originalAuthorName":"李永良"},{"authorName":"华雯","id":"ad8d44c2-b53b-4947-85ca-3982aa115903","originalAuthorName":"华雯"},{"authorName":"王怡","id":"553fb58c-3d95-4a4e-a548-e4617f93e9e5","originalAuthorName":"王怡"},{"authorName":"武光明","id":"ab689d3b-4ebe-4539-93c1-ad7969e9fab9","originalAuthorName":"武光明"}],"doi":"","fpage":"4","id":"012f6ee8-27be-4d68-8a46-ccbc09de46d4","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"09bf9343-630d-4df0-b524-751a95526729","keyword":"SrWO_4","originalKeyword":"SrWO_4"},{"id":"13637bd5-ede4-4e6f-b008-2c9fa4ec7cf1","keyword":"形貌","originalKeyword":"形貌"},{"id":"da8f5eba-3ffe-49e5-bbf4-8887435a814c","keyword":"光致发光","originalKeyword":"光致发光"},{"id":"4aec453e-746d-4a31-b5c2-92f962ee0302","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"cldb201004002","title":"SrWO_4纳米材料的制备及其发光性能","volume":"24","year":"2010"},{"abstractinfo":"用PEG凝胶法合成出不同平均粒径的ZnFe2O4纳米晶,用TEM和XRD分析其结构、粒径和形貌用磁天平仪和红外光谱仪(IR)等手段研究其性能.结果表明ZnFe2O4纳米晶在室温下有磁性,表面不饱和离子配位数降低","authors":[{"authorName":"杨桦","id":"74fad8af-aeb3-4607-acfc-84458f64bf88","originalAuthorName":"杨桦"},{"authorName":"宋利珠","id":"13bd4d17-540a-4167-94ec-50c3391603e9","originalAuthorName":"宋利珠"},{"authorName":"裘晓辉","id":"f98968e5-1f2d-4fe6-a53c-6ba7df09f312","originalAuthorName":"裘晓辉"},{"authorName":"王子忱","id":"fd5f513e-bb6a-403d-a445-17326ebb70c3","originalAuthorName":"王子忱"},{"authorName":"赵慕愚","id":"c567bfd5-5dbe-463d-be38-aea8143994bd","originalAuthorName":"赵慕愚"}],"categoryName":"|","doi":"","fpage":"242","id":"4bbc6b63-fb14-4ef3-95fd-494b81c7f186","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"a2e82040-fb85-4e6a-81dd-c8f3b383e114","keyword":"ZnFe_2O_4","originalKeyword":"ZnFe_2O_4"},{"id":"2fe3542d-1ebf-414f-a78f-7ee616335bc9","keyword":" nanocrystalline","originalKeyword":" nanocrystalline"},{"id":"eaa3969b-3f00-42f6-8c9b-fcb768a493f8","keyword":" IR","originalKeyword":" IR"},{"id":"6957f264-7ff5-4d39-b83d-f380361c4279","keyword":" magnetization","originalKeyword":" magnetization"}],"language":"zh","publisherId":"1005-3093_1994_3_5","title":"ZnFe_2O_4纳米晶的性能","volume":"8","year":"1994"},{"abstractinfo":"锌黄锡矿结构的Cu2ZnSnS4(CZTS)晶体属于四元金属硫化物纳米材料,由于其高吸收系数,适宜的禁带宽度(约1.50 eV),原料丰富等优点成为太阳能电池领域重要的光吸收层材料.本文主要综述了金属硫化物纳米材料的常用制备方法,并重点介绍CZTS纳米晶体的制备方法及研究现状.","authors":[{"authorName":"蔡倩","id":"96b56381-a4a2-4a84-acea-2bc1d669afda","originalAuthorName":"蔡倩"},{"authorName":"向卫东","id":"2e193902-4305-4722-a7ad-89bcd849f787","originalAuthorName":"向卫东"},{"authorName":"梁晓娟","id":"efa7ab48-d6f5-4e61-a951-0559e1759b8c","originalAuthorName":"梁晓娟"},{"authorName":"王芸","id":"da7125a4-bad2-438e-af31-e881ee1c2b87","originalAuthorName":"王芸"},{"authorName":"赵秀丽","id":"43282614-ed03-41f3-9547-afe77bcfdccd","originalAuthorName":"赵秀丽"}],"doi":"","fpage":"1333","id":"4d8e2a11-44fd-4198-b9d2-2804f646fbac","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"62278fad-2d5b-4798-a58a-dc275993d874","keyword":"Cu2ZnSnS4","originalKeyword":"Cu2ZnSnS4"},{"id":"0c1376f3-929d-446d-949d-3f084d71d7da","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"14ad2904-cfcc-4c0a-b1a9-8a10213a2971","keyword":"制备方法,研究现状","originalKeyword":"制备方法,研究现状"}],"language":"zh","publisherId":"gsytb201106022","title":"Cu2ZnSnS4纳米晶体的研究现状","volume":"30","year":"2011"},{"abstractinfo":"将Si3N4纳米粒子加入电镀镍的基础镀液中,在碳钢上制备了Ni-Si3N4复合镀层.扫描电镜观察表明,复合镀层的表面晶粒细小致密.能谱分析结果表明,镀层表面以Ni元素为主,且含有少量的Si和N.随着镀液中纳米Si3N4粒子含量的增加,镀层的显微硬度升高.热震法和划痕法实验表明,镀层与基体结合良好.","authors":[{"authorName":"贾素秋","id":"e7aecec6-ff47-486b-ae37-8bf10bcb147c","originalAuthorName":"贾素秋"},{"authorName":"于淑敏","id":"9a54f237-e8ea-41c6-9db7-5a7015b770e0","originalAuthorName":"于淑敏"},{"authorName":"李军","id":"210f7a15-88ba-46dd-917c-eb68257d3c97","originalAuthorName":"李军"},{"authorName":"雷军","id":"e17b9b86-b644-4355-829f-61de58e10bcb","originalAuthorName":"雷军"}],"doi":"10.3969/j.issn.1004-227X.2007.06.001","fpage":"1","id":"3c45f053-8e9b-4d87-b0c7-b17a827ad1f1","issue":"6","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"a025d729-9137-4879-a379-09795a852edb","keyword":"Ni-Si3N4复合镀层","originalKeyword":"Ni-Si3N4复合镀层"},{"id":"1cfb248a-628b-4e01-836c-72ea023ad7c9","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"e2874aa2-31b5-4cb3-8e98-482825b9b146","keyword":"形貌","originalKeyword":"形貌"},{"id":"a57744a6-7395-4fe1-8aaa-37d56d306dfb","keyword":"显微硬度","originalKeyword":"显微硬度"}],"language":"zh","publisherId":"ddyts200706001","title":"Ni-Si3N4纳米复合镀层研究","volume":"26","year":"2007"},{"abstractinfo":"采用超声波喷丸技术(USSP),在TC4材料上制备出具有纳米晶结构特征的表面层,通过采用金相显微镜、透射电镜、扫描电镜、疲劳试验机及表面粗糙度仪等检测设备,对USSP处理后TC4钛合金组织与性能进行了表征.结果表明,经USSP处理后TC4表面产生剧烈塑性变形,组织细化至纳米级;实验测得USSP处理试样疲劳极限有所提高,疲劳极限最大提高了10.64%;裂纹源萌生于试样表面,疲劳断口由未处理的河流状变为处理后的波浪状;经USSP处理后粗糙度越小,缺口应力集中越小,对应疲劳性能越好.","authors":[{"authorName":"张聪惠","id":"e78689aa-d752-4aa7-91a8-0fc98b35e9cf","originalAuthorName":"张聪惠"},{"authorName":"解钢","id":"89e80f58-66d9-4336-a033-81d2df9e7410","originalAuthorName":"解钢"},{"authorName":"宋薇","id":"93e52d1b-2be2-4def-a027-bea964b6633c","originalAuthorName":"宋薇"},{"authorName":"王耀勉","id":"f032bfc7-adaf-4ded-8a60-ba9b79489568","originalAuthorName":"王耀勉"},{"authorName":"何晓梅","id":"878b5b0e-b1c3-474f-a776-94b8ebf6f171","originalAuthorName":"何晓梅"}],"doi":"","fpage":"866","id":"b0f533e8-ec1d-4327-b4e7-fa32a9d11be3","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"ab0f7f02-70f6-4239-9d59-a122b1211ad3","keyword":"超声波喷丸","originalKeyword":"超声波喷丸"},{"id":"cff67cf3-0035-40d1-b1d9-ce3c4459ff1f","keyword":"疲劳性能","originalKeyword":"疲劳性能"},{"id":"020b7302-ea09-4692-b431-3a39e97a586b","keyword":"粗糙度","originalKeyword":"粗糙度"},{"id":"8987d623-accc-4a7b-8cb9-76ebb5fb466c","keyword":"断口","originalKeyword":"断口"}],"language":"zh","publisherId":"xyjsclygc201504019","title":"表面纳米化TC4疲劳性能研究","volume":"44","year":"2015"}],"totalpage":5486,"totalrecord":54858}