{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"针对板带轧机液压AGC系统在线故障诊断问题,建立了一种基于非线性自回归滑动平均模型(NARMA)的递归神经网络,通过AIC定阶法确定模型阶次.运用生产实际数据,通过动态学习算法完成对网络的训练,使网络映射系统的动力学特性.该网络模型避免了故障的自学习,能够很好地实现故障检测.试验研究证明了该神经网络方法进行轧机液压AGC系统在线故障诊断的可行性和有效性.","authors":[{"authorName":"董敏","id":"ab6de779-d07f-486a-bbe0-8a9fdf0e2c87","originalAuthorName":"董敏"},{"authorName":"刘才","id":"7062c546-24a3-465a-be08-cd02ef4422fb","originalAuthorName":"刘才"},{"authorName":"李国友","id":"ec3e1b60-bd84-4b60-a972-a0a74e095218","originalAuthorName":"李国友"},{"authorName":"张伟","id":"c9572bed-640f-4d78-bfb4-406438f4b774","originalAuthorName":"张伟"}],"doi":"","fpage":"45","id":"3d393ddc-c68a-4a14-bab0-60551a478651","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"5c9f8659-e5c1-4f46-a1d0-1a6ab90b22b3","keyword":"液压AGC","originalKeyword":"液压AGC"},{"id":"8f945f97-eb2f-4854-8c9d-50c6506f552b","keyword":"NARMA","originalKeyword":"NARMA"},{"id":"a185c2db-6af8-44a1-aad3-ee2cafe418ca","keyword":"递归神经网络","originalKeyword":"递归神经网络"},{"id":"8a66f100-3e54-493f-8226-ca00daa636f0","keyword":"故障诊断","originalKeyword":"故障诊断"}],"language":"zh","publisherId":"gt200505012","title":"轧机液压AGC系统基于神经网络的传感器故障诊断技术","volume":"40","year":"2005"},{"abstractinfo":"神经网络应用于系统建模时要考虑两个关键问题:一是采用的神经网络类型;二是当神经网络类型确定以后,确定网络的输入向量,这两个问题是紧密关联的.相对于BP神经网络收敛太慢,具有泛化能力的缺点,DRNN网络(对角递归神经网络)能实现动态非线性映射,具有记忆功能,可以追踪模型的变化,具有更好的预测效果.首先用关联规则方法挖掘出一些与质量指标有关的工艺条件,再结合现场工人的实际经验,找到模型的输入输出,再运用DRNN对82B钢进行建模和优化,取得了很好的预测效果.","authors":[{"authorName":"李方方","id":"cf8a1530-aac4-4103-86b6-f2f35b63c312","originalAuthorName":"李方方"},{"authorName":"赵英凯","id":"225e73e1-4937-4fe6-b930-0b4e290662b9","originalAuthorName":"赵英凯"},{"authorName":"俞辉","id":"a799d7e3-21f0-4026-aa1d-61997f18192c","originalAuthorName":"俞辉"}],"doi":"","fpage":"59","id":"d3572a45-6f07-4779-bb83-7d10ae532095","issue":"8","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"6d650ec5-361c-45b3-bc81-e46ca7cfeffe","keyword":"DRNN网络","originalKeyword":"DRNN网络"},{"id":"03065db2-e2c8-4b8f-918e-214b378ce4bf","keyword":"关联规则","originalKeyword":"关联规则"},{"id":"f9ec0a67-7b22-4875-8ffc-772dcef489fb","keyword":"预估","originalKeyword":"预估"},{"id":"e6983adc-618d-4f10-984a-30d3a6379b65","keyword":"82B钢","originalKeyword":"82B钢"}],"language":"zh","publisherId":"gtyjxb200708014","title":"对角递归神经网络在82B钢力学性能预估中的应用","volume":"19","year":"2007"},{"abstractinfo":"神经网络应用于系统建模时要考虑两个关键问题:一是采用的神经网络类型;二是当神经网络类型确定以后,确定网络的输入向量,这两个问题是紧密关联的。相对于BP神经网络收敛太慢,具有泛化能力的缺点,DRNN网络(对角递归神经网络)能实现动态非线性映射,具有记忆功能,可以追踪模型的变化,具有更好的预测效果。首先用关联规则方法挖掘出一些与质量指标有关的工艺条件,再结合现场工人的实际经验,找到模型的输入输出,再运用DRNN对82B钢进行建模和优化,取得了很好的预测效果。","authors":[{"authorName":"李方方","id":"775c7a8e-aa62-4897-8fd3-4f7e9dc6e7e8","originalAuthorName":"李方方"},{"authorName":"赵英凯","id":"52fa1a7b-3b77-48e2-af4a-8e21a7af957c","originalAuthorName":"赵英凯"},{"authorName":"俞辉","id":"b5b48cf7-ad3c-4387-8e8e-cc1c1924aae2","originalAuthorName":"俞辉"}],"categoryName":"|","doi":"","fpage":"59","id":"f1cadabe-c802-4bcc-8d63-ec9410c441e1","issue":"8","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"aba90a6d-6c7a-477f-9adf-f8019b73d289","keyword":"DRNN网络;关联规则;预估;82B钢","originalKeyword":"DRNN网络;关联规则;预估;82B钢"}],"language":"zh","publisherId":"1001-0963_2007_8_4","title":"对角递归神经网络在82B钢力学性能预估中的应用","volume":"19","year":"2007"},{"abstractinfo":"在实验的基础上建立基于神经网络的连铸保护渣性能预测模型,经对比分析表明,用神经网络对连铸保护渣性能进行训练和学习后,神经网络方法能有效和比较准确地对保护渣性能进行预测.","authors":[{"authorName":"向嵩","id":"58f02dff-c592-4da7-b4c1-09f8f0908b0b","originalAuthorName":"向嵩"},{"authorName":"王雨","id":"43eea525-9488-4f6b-bfd0-2a78c7fb9b4b","originalAuthorName":"王雨"}],"doi":"10.3969/j.issn.1005-4006.2005.05.016","fpage":"43","id":"4989b298-192d-4f2d-92c7-550a0121b193","issue":"5","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"22766b87-5901-4a63-a0cc-1f74d54f3055","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"lz200505016","title":"利用神经网络预测连铸保护渣性能","volume":"","year":"2005"},{"abstractinfo":"简略介绍了人工神经网络的基本思想及特点,综述了人工神经网络在材料性能预测、工艺参数优化、相变规律的研究、微观组织模拟等领域的应用情况.对人工神经网络研究中存在的问题进行了分析,展望了其应用前景.","authors":[{"authorName":"赖静","id":"789d1363-8cb1-457c-81ba-3257d59af78e","originalAuthorName":"赖静"},{"authorName":"王清","id":"2e44c95e-e141-49af-8b16-58af159b2aa5","originalAuthorName":"王清"},{"authorName":"孙东立","id":"99381c44-1bc5-42e7-89b3-757de8f825b7","originalAuthorName":"孙东立"}],"doi":"10.3969/j.issn.1001-4381.2006.z1.121","fpage":"458","id":"7f0a71a9-ab61-4bdb-9299-44d9808aa7e5","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"c117048d-1982-4342-9138-0137871b3a85","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"5626655d-c84d-410a-afae-b0532c5886dc","keyword":"性能","originalKeyword":"性能"},{"id":"a4c88884-ac9a-4a49-a2d7-1cb3e0889ec9","keyword":"工艺","originalKeyword":"工艺"},{"id":"e1723322-039d-427c-a5fb-70f5e105af2e","keyword":"相变","originalKeyword":"相变"},{"id":"46e7c5d0-2f30-4633-8895-20dc3d5801ca","keyword":"组织模拟","originalKeyword":"组织模拟"}],"language":"zh","publisherId":"clgc2006z1121","title":"人工神经网络在材料研究中的应用","volume":"","year":"2006"},{"abstractinfo":"神经网络是一种旨在模仿人脑结构及其功能的软计算方法.它具有优良的容错性、自组织性和突出的非线性映射能力.最近几年,神经网络开始渗透到膜技术领域,为膜过程的研究和应用提供了一种全新的表达工具.目前,神经网络涉及到的膜过程包括MF、UF、NF以及RO等.在简要介绍了神经网络的结构与理论的基础上,分别评述了神经网络在这些膜过程中应用的研究现状,并展望了今后的研究方向.","authors":[{"authorName":"熊日华","id":"3472b7b5-bea8-496e-9570-4de8887c4792","originalAuthorName":"熊日华"},{"authorName":"王世昌","id":"8ef0ea5c-3faf-494a-8fb2-62d3a50a231e","originalAuthorName":"王世昌"}],"doi":"10.3969/j.issn.1007-8924.2003.06.011","fpage":"44","id":"aa1e482d-25ea-4682-8cd2-bcc687696405","issue":"6","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"41a584ce-49dc-40e2-aa00-9236a43b324d","keyword":"神经网络","originalKeyword":"神经网络"},{"id":"d88fc47b-6712-449c-ba00-4622761f7c45","keyword":"微滤","originalKeyword":"微滤"},{"id":"624a077f-dd46-4e67-bd02-9c9bd226286d","keyword":"超滤","originalKeyword":"超滤"},{"id":"b5e05f95-87ba-4d9a-b4e2-1a7350ae72b6","keyword":"纳滤","originalKeyword":"纳滤"},{"id":"96b26f2d-cdb5-4258-9c06-e0ee97cce728","keyword":"反渗透","originalKeyword":"反渗透"}],"language":"zh","publisherId":"mkxyjs200306011","title":"神经网络在膜技术中的应用","volume":"23","year":"2003"},{"abstractinfo":"轧制过程中,针对4200轧机在轧件宽展变化自动预测和控制,分析了轧制过程中宽展变化的影响因素。在神经网络技术和现场实测数据的基础上,利用Matlab人工神经网络工具箱,应用GRNN广义回归神经网络建立宽展变化预测模型来提高轧制宽展变化预测的精度。结果表明,该方法建立的模型可以实现对宽展变化的预测,其预测精度有较大提高。","authors":[{"authorName":"孟令启","id":"0df6bc79-b808-45a1-813c-06824e975af3","originalAuthorName":"孟令启"},{"authorName":"孟梦","id":"7c6ec060-21a0-49d6-b8ae-f6e1d5a9a9f5","originalAuthorName":"孟梦"}],"categoryName":"|","doi":"","fpage":"23","id":"493171aa-6021-4a61-ba7d-c2630f2c623b","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"8d329922-578e-41f6-9d9b-8495f3e98789","keyword":"中厚板轧机;宽展;GRNN神经网络","originalKeyword":"中厚板轧机;宽展;GRNN神经网络"}],"language":"zh","publisherId":"1001-0963_2008_3_1","title":"基于GRNN神经网络的4200轧机宽展模型","volume":"20","year":"2008"},{"abstractinfo":"轧制过程中,针对4200轧机在轧件宽展变化自动预测和控制,分析了轧制过程中宽展变化的影响因素.在神经网络技术和现场实测数据的基础上,利用Matlab人工神经网络工具箱,应用GRNN广义回归神经网络建立宽展变化预测模型来提高轧制宽展变化预测的精度.结果表明,该方法建立的模型可以实现对宽展变化的预测,其预测精度有较大提高.","authors":[{"authorName":"孟令启","id":"1646277a-165a-43e6-a686-c5f2801532f6","originalAuthorName":"孟令启"},{"authorName":"孟梦","id":"6b81b794-74a8-446a-a6f3-4344fb8b50f5","originalAuthorName":"孟梦"}],"doi":"","fpage":"23","id":"6f67305b-2592-4089-848e-6e2f3346da50","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"a5ee9aec-dfbf-47e5-90e2-d0ca7e30b196","keyword":"中厚板轧机","originalKeyword":"中厚板轧机"},{"id":"4b9c5263-90bf-4a4a-8ab0-9e586cec6a05","keyword":"宽展","originalKeyword":"宽展"},{"id":"b8ee4990-0dd4-489f-ab28-33043c3fd9aa","keyword":"GRNN神经网络","originalKeyword":"GRNN神经网络"}],"language":"zh","publisherId":"gtyjxb200803006","title":"基于GRNN神经网络的4200轧机宽展模型","volume":"20","year":"2008"},{"abstractinfo":"针对板带材轧制过程是一个复杂的非线性过程、难以建立精确数学模型的特点,提出了厚度自动控制神经网络模糊智能方法,设计了输入为“编码” 的神经网络模糊控制器。通过仿真证明了神经网络模糊控制的可行性,其控制精度优于常规方法。","authors":[{"authorName":"贾春玉","id":"ce3edd3c-8ffc-4a20-89d9-193f824f8df2","originalAuthorName":"贾春玉"}],"doi":"","fpage":"50","id":"8c2310d4-1c78-40a3-897f-78512b652db7","issue":"2","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"6dd019e5-6ca1-4a98-a467-b955d26ba90e","keyword":"神经网络模糊推理","originalKeyword":"神经网络模糊推理"},{"id":"a5db2e63-50a7-4296-9bf6-e9c92fde8c14","keyword":"编码","originalKeyword":"编码"},{"id":"3443e460-2443-4e97-a284-54d67e032193","keyword":"热轧带钢","originalKeyword":"热轧带钢"},{"id":"34491d80-fc87-40b3-936e-4f4ceff0092c","keyword":"厚度控制","originalKeyword":"厚度控制"}],"language":"zh","publisherId":"gtyjxb200102011","title":"基于神经网络模糊推理的智能厚度控制","volume":"13","year":"2001"},{"abstractinfo":"针对选择性激光烧结成型件变形大、精度较低的问题,将神经网络方法应用于选择性激光烧结(SLS)加工工艺的研究.根据SLS加工工艺的特点,研究的工艺参数包括:层厚、扫描间距、激光功率、扫描速度、环境温度、层与层之间的加工时间间隔和扫描方式.建立了SLS加工工艺参数与加工变形、收缩率之间的神经网络预测模型.实验结果与神经网络模型计算结果十分吻合,说明该神经网络模型能定量地反映出工艺参数与加工材料变形、收缩率之间的关系.","authors":[{"authorName":"王荣吉","id":"851b45da-4aeb-4daa-9dbe-ea4abef190c2","originalAuthorName":"王荣吉"},{"authorName":"王玲玲","id":"1221054f-80bd-47b9-89ee-b2de641d0d6e","originalAuthorName":"王玲玲"},{"authorName":"赵立华","id":"fffed2b0-5113-46dd-8486-0dd3249c4e7d","originalAuthorName":"赵立华"}],"doi":"","fpage":"452","id":"46c04892-998f-4fba-9988-5ee3c7bafebe","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"2f532bc8-7210-4e3e-b0c7-31d5ef3b8e3e","keyword":"快速成型","originalKeyword":"快速成型"},{"id":"7ab453db-c6a1-4ff1-b0a3-06707be1c417","keyword":"选择性激光烧结","originalKeyword":"选择性激光烧结"},{"id":"a66e5985-4687-497d-b0a4-da29f1af7150","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"1fa1f9e4-0797-48fb-8aa8-48ec697438ff","keyword":"神经网络","originalKeyword":"神经网络"}],"language":"zh","publisherId":"zgysjsxb200503022","title":"基于神经网络的快速成型工艺","volume":"15","year":"2005"}],"totalpage":325,"totalrecord":3248}