{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"废水中的砷是最具毒性的环境污染物之一.为了更好地利用纳米(Nanoscale Zero-Valent Iron,NZVI)修复水体污染,本文进行了浮石负载NZVI去除水相中As(Ⅴ)的研究.利用环境扫描电镜(SEM)和透射电子显微镜(TEM)对浮石负载纳米(P-NZVI)的形态和粒度进行表征分析,根据批试验和间歇试验探究反应条件对去除效果的影响,并通过对照P-NZVI与As(Ⅴ)溶液反应前后的样品的X射线光电子能谱(XPS),结合XPS Fe2p和XPS As3d窄轨道图谱,探讨P-NZVI对水相中As(Ⅴ)的去除机理.研究结果表明,制备所得NZVI颗粒平均粒径30.6 nm,分散在浮石表面.利用BET-N2法检测得到P-NZVI的比表面积为32.2 m2·g-1(NZVI含量0.28 g,质量比7.7%).P-NZVI对As(Ⅴ)的去除率随初始pH值、反应温度、As(Ⅴ)初始质量浓度的升高而降低,反应符合准一级和准二级动力学方程.初始As(Ⅴ)浓度为100 mg·L-1时,P-NZVI的平衡时吸附量为35.7 mg·g-1.P-NZVI对As(Ⅴ)的去除机理包括吸附、沉淀和共沉淀作用.","authors":[{"authorName":"杨艺琳","id":"2151f97c-5dda-4fcd-b093-772ed26ce340","originalAuthorName":"杨艺琳"},{"authorName":"周孜迈","id":"304b3db0-2ef1-4196-9bad-9579d59eeab7","originalAuthorName":"周孜迈"},{"authorName":"邓文娜","id":"8989d514-a6b0-4f62-8f30-ac9a6ee27a4d","originalAuthorName":"邓文娜"},{"authorName":"孙艳秋","id":"1ee307ca-2d5f-4750-8325-becfee4764c1","originalAuthorName":"孙艳秋"},{"authorName":"王悦","id":"b5cfe4d4-d3c0-4bf5-a8e2-92860ae62a50","originalAuthorName":"王悦"},{"authorName":"柳听义","id":"91fc555b-6a06-4971-a714-a59a58ca5c13","originalAuthorName":"柳听义"},{"authorName":"王中良","id":"d4ebcff2-4745-45bf-99cd-52f259f9aee5","originalAuthorName":"王中良"}],"doi":"10.7524/j.issn.0254-6108.2017.03.2016051301","fpage":"598","id":"a4ac3a6d-5abe-42ac-8023-17442df3cfb0","issue":"3","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"8965948f-3435-48fe-bb7a-7261151e5f0b","keyword":"浮石-纳米","originalKeyword":"浮石-纳米零价铁"},{"id":"3a305124-f1d1-499a-b124-f0b5084f23ae","keyword":"As(Ⅴ)","originalKeyword":"As(Ⅴ)"},{"id":"d9308549-f021-46c4-9e5a-4db99b2d68c6","keyword":"水体砷污染","originalKeyword":"水体砷污染"},{"id":"84a17d0f-0074-4879-b7ae-8435c536b077","keyword":"去除机理","originalKeyword":"去除机理"}],"language":"zh","publisherId":"hjhx201703017","title":"浮石负载纳米去除水相中的砷(Ⅴ)","volume":"36","year":"2017"},{"abstractinfo":"利用液相还原法制备硅酸钙负载纳米(CS-nZⅥ)进行去除水中Cr(Ⅵ)的实验研究.结果表明,CS-nZⅥ对Cr(Ⅵ)的去除效果明显优于还原铁粉和硅酸钙,略差于纳米;低pH值、越低初始Cr(Ⅵ)浓度及较大投加量均有利于Cr(Ⅵ)去除,最大去除率可达98.9%;反应后CS-nZⅥ颗粒扫描电镜及X射线能谱分析结果表明Cr占3.06wt%;等温吸附实验结果表明较好拟合Langmuir和Freundlich等温吸附模型,CS-nZⅥ对Cr(Ⅵ)的最大吸附容量达253.8 mg/g.","authors":[{"authorName":"秦泽敏","id":"a630b189-d6ed-4f22-88ab-114e71c48f80","originalAuthorName":"秦泽敏"},{"authorName":"董黎明","id":"1f685de0-96db-4c53-bfeb-742bca510a3a","originalAuthorName":"董黎明"},{"authorName":"赖花","id":"5d364abd-7cbd-4e07-ba37-1ad02d60176e","originalAuthorName":"赖花"},{"authorName":"周恋彤","id":"a8a935f1-51d4-4747-9fe9-8ad617e65df3","originalAuthorName":"周恋彤"}],"doi":"","fpage":"2376","id":"515fab60-664a-4936-a600-01e0992ab223","issue":"8","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"c8904628-5f21-4a57-be42-8e4afd284f64","keyword":"纳米","originalKeyword":"零价纳米铁"},{"id":"05ebf9f0-263a-4173-bd94-6b9c3861c006","keyword":"硅酸钙负载","originalKeyword":"硅酸钙负载"},{"id":"4a388b90-b1c9-46c4-bd0b-b5b10cf02db9","keyword":"六铬","originalKeyword":"六价铬"},{"id":"17f446fa-d04b-4ac7-b96c-194a3d34d057","keyword":"去除","originalKeyword":"去除"}],"language":"zh","publisherId":"gsytb201508054","title":"硅酸钙负载纳米吸附去除水中六铬","volume":"34","year":"2015"},{"abstractinfo":"采用NaBH4还原Fe2+制备活性炭负载纳米,以去除水溶液中铀酰离子,使用X射线衍射(XRD)对材料进行了表征,考察了活性炭负载纳米投加量、溶液pH值、反应温度和吸附时间对铀去除效果的影响.分别用动力学和吸附等温模型对吸附数据进行了分析.结果表明:XRD分析活性炭负载纳米负载的颗粒大部分为纳米,表面有一层氧化物(FeOOH)生成.活性炭负载纳米对U(Ⅵ)具有很好的去除效果,当投加量为0.5 g/L、U(Ⅵ)初始质量浓度为250 mg/L、pH =5、温度为35℃、时间为60 min时,U(Ⅵ)去除率为98.52%,吸附量为492.6 mg/g.吸附过程符合准二级动力学模型和Freundlich吸附等温模型,所制备的吸附剂有望解决含铀废水难以有效处理等问题.","authors":[{"authorName":"刘大前","id":"585a40fc-ad53-4b99-b876-b154195e1bc7","originalAuthorName":"刘大前"},{"authorName":"刘峙嵘","id":"d7318924-201b-4231-be16-48031a30f813","originalAuthorName":"刘峙嵘"},{"authorName":"王长福","id":"9593c780-40ed-4596-a009-b95df6990cdc","originalAuthorName":"王长福"},{"authorName":"赖毅","id":"b2270738-658c-4e9e-ae06-8eb2895de4c0","originalAuthorName":"赖毅"},{"authorName":"黄新","id":"eb7d48dd-f3d5-45c5-b0e4-58b7849e8d60","originalAuthorName":"黄新"}],"doi":"","fpage":"1328","id":"50a8de2f-c5df-492d-ab91-757bdf2c17aa","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"3db036cc-2bad-4a16-b4f3-e9f919cc9e72","keyword":"活性炭负载纳米","originalKeyword":"活性炭负载纳米零价铁"},{"id":"ab4af0ae-896c-4be5-aa05-945b81145987","keyword":"铀","originalKeyword":"铀"},{"id":"649ab360-90ae-464f-9b82-e78933e96c39","keyword":"吸附","originalKeyword":"吸附"},{"id":"f99f1c06-e7df-4a7d-8629-2bb0bb916286","keyword":"吸附动力学","originalKeyword":"吸附动力学"}],"language":"zh","publisherId":"rgjtxb98201605032","title":"活性炭负载纳米去除水溶液中U(Ⅵ)的研究","volume":"45","year":"2016"},{"abstractinfo":"为改善纳米粉体的分散性,使其在高表面能态下稳定存在,以NaBH4液相还原Fe3+制备纳米颗粒.对比采用不加入改性剂、加入改性剂2-膦酸丁烷-1,2,4-羧酸(PBTCA)和改性剂TH-904,分别制备普通纳米N-Fe0、改性纳米P-Fe0及T-Fe0.并对改性前后纳米进行X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FTIR)及能谱(EDS)分析测试.结果表明,制备的N-Fe0、P-Fe及T-Fe0颗粒平均粒径分别为125 nm、73 nm和64 nm.改性后,由于颗粒粒径减小,引起产品部分氧化,但颗粒得到有效分散.FTIR测试表明,改性后产物中分别出现二种改性剂有效基团,表明改性剂对纳米有效分散起到了积极作用,并对该作用进行了分析.","authors":[{"authorName":"冯婧微","id":"9f303b2e-dab3-496f-b739-06c5ae5a5a71","originalAuthorName":"冯婧微"},{"authorName":"粱彦秋","id":"307bf7be-e6ea-43f3-96e6-b7436663653d","originalAuthorName":"粱彦秋"}],"doi":"","fpage":"4","id":"04f87a1a-a10e-4edb-bb1c-91c0b084d905","issue":"14","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"76f9938e-6e1a-4c44-9298-bf901f8a37ce","keyword":"纳米","originalKeyword":"纳米零价铁"},{"id":"f61b8318-869d-4896-98b2-8cb95fc63888","keyword":"改性","originalKeyword":"改性"},{"id":"9a002eeb-70e9-4d01-a3bc-49a1380afc6c","keyword":"PBTCA","originalKeyword":"PBTCA"},{"id":"8754ce19-7714-4052-aa9b-d5d6e7dbed6b","keyword":"TH-904","originalKeyword":"TH-904"},{"id":"6de279b4-c097-426a-93b7-1eedc96edd42","keyword":"制备","originalKeyword":"制备"},{"id":"717bb5c9-119c-40ea-9c08-a4a305eb9181","keyword":"表征","originalKeyword":"表征"}],"language":"zh","publisherId":"cldb201314002","title":"PBTCA及TH-904改性纳米材料的制备及表征","volume":"27","year":"2013"},{"abstractinfo":"环境友好型材料的合成已成为当前研究的热点.纳米因卓越还原性能应用潜力巨大,纳米颗粒的绿色合成技术可避免污染并降低成本,提高修复效率.本文介绍了纳米合成工艺的绿色化进展,其中包括采用各类原始材料新型合成方法、合成工艺条件选择和制备产物的生成过程,经济性分析等.另外还比较了纳米颗粒绿色分散和负载改性过程中工艺试验参数、收率和选择性等,并对绿色纳米技术的工程应用和关键问题进行讨论,以及未来发展趋势进行展望.","authors":[{"authorName":"杜毅","id":"8702ae1d-e027-4e79-9e11-c1070990a379","originalAuthorName":"杜毅"},{"authorName":"王向宇","id":"5d3b6e25-782d-46fa-b28c-59ab1a883682","originalAuthorName":"王向宇"}],"doi":"10.7524/j.issn.0254-6108.2016.02.2015081702","fpage":"337","id":"30b25fd3-26ad-466e-ad6c-1a72992e900f","issue":"2","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"aee95227-2e8f-402e-9805-c2764f81421a","keyword":"纳米","originalKeyword":"纳米零价铁"},{"id":"cf263933-e1fb-4f42-8654-6b91e3199a7b","keyword":"绿色材料","originalKeyword":"绿色材料"},{"id":"fd156f86-64d2-40d1-944b-ce943ae3cdd2","keyword":"绿色合成","originalKeyword":"绿色合成"},{"id":"ed649d34-0a8c-4713-85b0-eef5ea248e6c","keyword":"绿色改性","originalKeyword":"绿色改性"}],"language":"zh","publisherId":"hjhx201602015","title":"新型纳米的绿色合成和改性工艺研究进展","volume":"35","year":"2016"},{"abstractinfo":"化学性质活泼,来源丰富,尤其纳米材料以其尺度小、表面效应大、吸附能力强等特点,近年来在重金属废水处理和土壤修复方面显示出了众多的优势,被看作一种有着广阔应用前景的新材料.但纳米因其易氧化、易团聚的特点,在实际应用中受到一定限制,因此一般利用表面修饰法对无机纳米颗粒的表面进行改性处理,通过改变颗粒表面物理化学性质,如表面能、组成、结构、官能团、光性、电性及吸附性能等,达到颗粒均匀稳定分散于体系中的目的.综述了目前纳米的改性研究进展,包括改性材料种类、改性方法、改性效果等,同时对改性纳米材料在应用中存在的问题和研究方向提出了建议.","authors":[{"authorName":"冯婧微","id":"1132ff01-4240-4709-b7be-2b5474c88bb4","originalAuthorName":"冯婧微"},{"authorName":"徐英侠","id":"1ddc9190-21b0-4230-bd4d-fbf8e84031cb","originalAuthorName":"徐英侠"},{"authorName":"兰希平","id":"e3aa9b14-6198-48c8-afbf-62a955f0652a","originalAuthorName":"兰希平"},{"authorName":"王黎","id":"8834c2cf-88cb-4cfa-8f47-cbaff3f5982a","originalAuthorName":"王黎"}],"doi":"10.11896/j.issn.1005-023X.2014.15.016","fpage":"83","id":"1f5a51ee-6d72-4e9e-93ee-f82832a9776b","issue":"15","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"be8046a6-2174-476d-aeda-232098a68c2c","keyword":"纳米","originalKeyword":"纳米零价铁"},{"id":"947cabf0-ece4-4cf0-b52a-c6331a4f5541","keyword":"团聚","originalKeyword":"团聚"},{"id":"bfeed64b-22f2-42d6-a7e2-14131671a552","keyword":"改性","originalKeyword":"改性"},{"id":"98e02cc9-18bb-417a-9bc0-bb41cd179dca","keyword":"分散","originalKeyword":"分散"}],"language":"zh","publisherId":"cldb201415016","title":"纳米的改性及其应用研究进展","volume":"28","year":"2014"},{"abstractinfo":"通过模拟降雨进行土柱淋溶实验来研究降雨条件下纳米镍(nZVI/Ni)对污染土壤六铬迁移的影响,并测定淋溶液的Cr(Ⅵ)浓度、pH、电导率和累积释放量.使用改进BCR连续提取法测定淋溶后各层土壤的铬形态分布,分析施加nZVI/Ni对土壤中铬形态的影响.结果表明,降雨条件下六铬的释放过程主要分为快速和慢速释放两个阶段.随着淋溶体积的增加,土壤淋溶液的pH逐渐升高后最后趋于平稳,电导率和Cr(Ⅵ)浓度迅速下降后趋于平稳.模拟降雨条件下,土壤中投加nZVI/Ni显著降低了淋溶液中Cr(Ⅵ)的累积释放量.投加0.10% nZVI/Ni土壤淋溶液的Cr(Ⅵ)累积释放量低于空白对照57.53%.在nZVI/Ni投加量相同时,模拟降雨的pH值越低nZVI/Ni的修复效果越好;降雨的淋溶次数对修复效果基本无影响;采用均匀混合的方式投加nZVI/Ni有着更好的修复效果.在土壤中nZVI/Ni对Cr(Ⅵ)修复过程中,纳米材料起主要作用,Fe(Ⅱ)的贡献很小.土壤经nZVI/Ni修复后,可还原态铬含量减少,可氧化态铬含量增加,表明纳米镍可以降低土壤中铬的迁移性,降雨条件下对六铬污染土壤具有一定的修复效果.","authors":[{"authorName":"刘涛","id":"a07ca863-5cab-48b4-a922-b75ee8b021f2","originalAuthorName":"刘涛"},{"authorName":"祝方","id":"c28ef213-381e-459c-b0b8-f3e136994cee","originalAuthorName":"祝方"},{"authorName":"赵晋宇","id":"818f4ec1-2bf0-436d-bb46-738760ffabe7","originalAuthorName":"赵晋宇"},{"authorName":"任文涛","id":"f43859c4-42c9-41c1-becd-4b7265dd6ed8","originalAuthorName":"任文涛"}],"doi":"10.7524/j.issn.0254-6108.2017.04.2016080201","fpage":"812","id":"4a41df56-c4ea-46e6-92f5-956b28f6929c","issue":"4","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"26ee3fa9-ce16-42c6-83b6-05ab32d2cd29","keyword":"模拟降雨","originalKeyword":"模拟降雨"},{"id":"1d7340e0-6dbf-4660-a095-8ce7ae06ad79","keyword":"六铬","originalKeyword":"六价铬"},{"id":"d7d32925-0b20-4d54-bc4e-864a4290e2fe","keyword":"纳米镍","originalKeyword":"纳米零价铁镍"},{"id":"364d27f0-3e1d-4b68-92ba-8111cfe15310","keyword":"土柱实验","originalKeyword":"土柱实验"}],"language":"zh","publisherId":"hjhx201704015","title":"降雨条件下纳米镍对污染土壤中六铬迁移的影响","volume":"36","year":"2017"},{"abstractinfo":"用液相还原法制备以活性炭为载体的负载型纳米(NZVI/AC),采用不同分散剂合成NZVI/AC,对材料进行XRD、SEM等表征,用制备的材料进行硝酸盐批实验,考察不同分散剂条件下合成的材料对硝酸盐氮的还原情况,再进一步分析硝酸盐氮的还原过程以及动力学.结果显示用聚乙烯吡咯烷酮(PVP)作为分散剂得到性能较好的NZVI/AC,且该体系存在微电解作用,硝酸盐氮的还原过程首先是纳米对硝酸根的吸附,然后再发生还原反应,产物以氨氮为主,中间产物有亚硝酸盐的生成,符合准一级反应动力学方程.","authors":[{"authorName":"陈西亮","id":"346d1000-416c-4cf2-af99-d044140e8e8d","originalAuthorName":"陈西亮"},{"authorName":"刘国","id":"0c67de9f-5998-4ecf-b58e-5f8d1943089e","originalAuthorName":"刘国"},{"authorName":"高阳阳","id":"ac3f7eba-744a-4989-8550-ac46dccee2b8","originalAuthorName":"高阳阳"},{"authorName":"余雯雯","id":"fd6f36ec-636a-459f-8aa9-3fc07dbaa4ed","originalAuthorName":"余雯雯"},{"authorName":"张俊杰","id":"ca82de99-d520-4947-ba43-da08fb0faad4","originalAuthorName":"张俊杰"}],"doi":"10.7524/j.issn.0254-6108.2016.08.2015123003","fpage":"1670","id":"6aeb9658-0367-437f-bcff-2e62cae18afe","issue":"8","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"40510439-08a9-4c1e-a8d4-3ee657485955","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"8a9a9b72-3452-4d16-a764-ca858286fc40","keyword":"负载型纳米","originalKeyword":"负载型纳米铁"},{"id":"9ccb7301-fff4-45d7-a569-809487f751d7","keyword":"硝酸盐","originalKeyword":"硝酸盐"},{"id":"d182cd86-aaa0-4c4f-a168-f6f945eedc06","keyword":"微电解","originalKeyword":"微电解"}],"language":"zh","publisherId":"hjhx201608016","title":"纳米炭微电解体系去除水中硝酸盐","volume":"35","year":"2016"},{"abstractinfo":"以高炉瓦斯泥为原料,经两步法制备出纳米颗粒.研究物质微观结构的变化规律及微观结构与性能表征之间的关系.用X射线衍射(XRD)、扫描电子显微境(SEM)、光电子能谱(XPS)和振动样品磁强计(VSM)对制得的产物进行结构及性能表征.结果表明:产物为纳米级α-Fe颗粒,平均粒径为74nm,外层有Ni的氧化物包覆,其饱和磁化强度Ms=60.85A·m2·kg-1,剩余磁化强度Mr=12.226A·m2·kg-1,矫顽力Hc=21.41kA·m-1.","authors":[{"authorName":"许莹","id":"5084059b-507b-4886-b64f-542684390abb","originalAuthorName":"许莹"},{"authorName":"王伟","id":"d104945e-0d70-414c-b3f3-9ce0a57aadf8","originalAuthorName":"王伟"},{"authorName":"王娟","id":"5c58aadb-6cd5-4491-90fd-ac0c33f1ddae","originalAuthorName":"王娟"}],"doi":"10.3969/j.issn.1001-4381.2009.08.011","fpage":"49","id":"f4401235-f1f9-40d9-9578-cbc5c3b932ff","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"d6f98f27-d6ce-4665-98e3-f2ca98a6e932","keyword":"两步法","originalKeyword":"两步法"},{"id":"53341787-1f4f-4737-9c65-0a2184d3ed5c","keyword":"高炉瓦斯泥","originalKeyword":"高炉瓦斯泥"},{"id":"5dee55ca-939c-40d6-b56c-2b0d5e2328e8","keyword":"纳米","originalKeyword":"纳米级零价铁"}],"language":"zh","publisherId":"clgc200908011","title":"两步法由高炉瓦斯泥制备纳米","volume":"","year":"2009"},{"abstractinfo":"将普通锌在滚压振动磨中研磨13 h后,制备出不规则片状、粒径为20~30 nm的纳米锌(NZVZ)。采用所制备的 NZVZ 降解甲基橙,系统研究了搅拌速度、NZVZ 投入量、甲基橙初始浓度和NaCl的加入对甲基橙降解效率的影响。结果表明, NZVZ表面反应活性增高,反应60 min 时,2 g/L 的NZVZ对甲基橙降解率为98.5%,比4 g/L 的普通锌高60.3%,其中间降解产物有对氨基苯磺酸和对氨基二甲基苯胺。降解率随转速、NZVZ 投入量的增加而升高,随 MO 初始浓度的增加而降低;加入 NaCl能促进反应进行,且随着投入量增加降解率增加。通过对实验数据的分析,验证 NZVZ降解 MO 过程符合伪一级动力学方程式。","authors":[{"authorName":"夏立珍","id":"d88ef3a8-5aea-476a-9b42-bcd01faf95d6","originalAuthorName":"夏立珍"},{"authorName":"王树林","id":"25bf4aa5-dc92-494c-a9e1-d56e235c9d11","originalAuthorName":"王树林"},{"authorName":"邱迎新","id":"ebefe241-fd31-4a17-b6f1-3656a4d30e6d","originalAuthorName":"邱迎新"},{"authorName":"赵立峰","id":"1fd9643e-eb27-41f0-93d8-dfe175e57f57","originalAuthorName":"赵立峰"}],"doi":"10.3969/j.issn.1001-9731.2014.06.013","fpage":"6060","id":"72c6a3d4-4966-4ae4-a827-efc939d1b7a5","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9da152f7-afd9-4b07-b3e6-990722fb0e0a","keyword":"滚压振动磨","originalKeyword":"滚压振动磨"},{"id":"7c778270-2035-4850-a588-d04a2f49b0b3","keyword":"纳米锌","originalKeyword":"纳米零价锌"},{"id":"11b2d58f-743d-4eac-bf83-477b39afd327","keyword":"甲基橙","originalKeyword":"甲基橙"},{"id":"5ac35efe-5c7e-49f9-87d2-73fea362ce56","keyword":"降解率","originalKeyword":"降解率"}],"language":"zh","publisherId":"gncl201406013","title":"纳米锌降解甲基橙效率探讨","volume":"","year":"2014"}],"totalpage":3663,"totalrecord":36621}