{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于单颗磨粒的最大未变形切屑厚度,建立了轴向超声振动辅助陶瓷磨削磨削数学模型,模拟得到了不同磨削深度、砂轮线速度和工件运动速度下的磨削并进行了试验验证.结果表明:法向磨削的计算值与试验值的误差为15%左右,切向磨削的计算值与试验值的误差为20%左右;由于前后磨粒的运动轨迹会存在重合,模型计算的磨削比试验值大;磨削随着砂轮边缘速度的增加而减小,随着磨削深度和工件速度的增加而增大.","authors":[{"authorName":"李厦","id":"1810126a-a641-4fca-a8e4-e08cc41f8e96","originalAuthorName":"李厦"},{"authorName":"臧瑞","id":"61aec101-e509-4081-a2df-d48ff3016ac3","originalAuthorName":"臧瑞"},{"authorName":"钞俊闯","id":"968375b5-1e6d-4fd8-8977-57527392425e","originalAuthorName":"钞俊闯"}],"doi":"10.11973/jxgccl201604011","fpage":"43","id":"d8e3c7ca-c464-4b56-8635-1318bfaa4969","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"89c3f942-6a86-4d47-83a4-6c6c449008c1","keyword":"轴向超声辅助磨削","originalKeyword":"轴向超声辅助磨削"},{"id":"9ff7cac0-46f1-4f66-9a4d-0bce67e23060","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"6e093aad-91c9-41ea-9003-b63e8aaadd69","keyword":"磨削","originalKeyword":"磨削力"},{"id":"3e020d3b-06f0-49ca-8153-599655765dc9","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"jxgccl201604011","title":"轴向超声辅助磨削陶瓷的磨削模型","volume":"40","year":"2016"},{"abstractinfo":"以ELID电解原理为基础,结合超声振动辅助磨削过程中单颗磨粒的运动学分析,建立了超声ELID复合磨削条件下的磨削数学解析模型,并对模型进行了分析和仿真.对模型的分析表明:超声振动改变了磨粒的运动轨迹,使同等条件下的未变形切屑厚度减小,砂轮的在线电解修整使磨粒始终处于锋锐状态,而且影响砂轮的实际切削深度,进而对磨削产生影响.磨削随着超声振动频率、振幅、电解电压、脉冲比、电解液电阻率的增大而减小;随着切削深度、工件速度的增大而增大.","authors":[{"authorName":"赵波","id":"85836056-adcd-417b-8b52-ba3ae926d8a5","originalAuthorName":"赵波"},{"authorName":"刘折","id":"52aef136-2e6d-44a0-90b2-fce019e85ce2","originalAuthorName":"刘折"},{"authorName":"郑友益","id":"7158ead4-61d1-4247-853e-92ae8a44546b","originalAuthorName":"郑友益"},{"authorName":"卞平艳","id":"7a200f0a-6374-49ff-87ce-7732931ad07a","originalAuthorName":"卞平艳"}],"doi":"10.3969/j.issn.1007-2330.2014.04.005","fpage":"31","id":"cf1401fa-b6b7-4f72-9da2-56f1057bc074","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"bab86950-ddfe-4790-92e9-542a774b5112","keyword":"磨削","originalKeyword":"磨削"},{"id":"f157012f-2346-4a3c-8a50-86f33410b812","keyword":"超声振动","originalKeyword":"超声振动"},{"id":"c5db2d31-ec98-4beb-9198-9bd728f5fa2c","keyword":"ELID","originalKeyword":"ELID"},{"id":"31248ba4-f2c5-4327-9602-527e28e89f58","keyword":"磨削","originalKeyword":"磨削力"},{"id":"8e878eca-254e-4317-a552-dd1911cb1782","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"yhclgy201404005","title":"超声ELID复合磨削磨削模型研究","volume":"44","year":"2014"},{"abstractinfo":"基于超声振动磨削与ELID磨削加工机理,构建超声ELID复合平面磨削系统试验平台,以探求硬脆材料精密磨削加工新方法.对陶瓷材料超声ELID复合平面磨削条件下的磨削进行理论分析,在超声ELID复合平面磨削系统试验平台上,进行相同磨削参数下的纳米Al203陶瓷ELID磨削与超声ELID复合磨削试验,对比、分析两种磨削方式下磨削的实际变化.研究表明,与ELID磨削相比,超声ELID复合磨削方式下,超声振动可减小实际磨削,磨削大小随磨削深度的增加而增加,表面质量也得到改善.","authors":[{"authorName":"邵水军","id":"57a19780-bac2-4616-ae15-01f034068c2f","originalAuthorName":"邵水军"},{"authorName":"赵波","id":"aa01ab3c-02a8-473e-ba30-ccbbcda5dd24","originalAuthorName":"赵波"},{"authorName":"闫燕艳","id":"46ee5120-f255-4835-a1f4-ca6bbe9a6b03","originalAuthorName":"闫燕艳"},{"authorName":"卞平艳","id":"d720bbdc-ca9b-48ff-8a01-554531d66f0e","originalAuthorName":"卞平艳"}],"doi":"","fpage":"1","id":"7b6f8a07-3620-46b4-adee-3fb9f9d24110","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"09c22f80-94da-4764-b91c-abcf58d372e5","keyword":"纳米陶瓷材料","originalKeyword":"纳米陶瓷材料"},{"id":"20e53d14-1843-4938-a0a1-b926d577b060","keyword":"超声磨削","originalKeyword":"超声磨削"},{"id":"5f3780fd-f3da-48aa-84e8-7c27d84e2d95","keyword":"ELID","originalKeyword":"ELID"},{"id":"3f553aab-c23d-45d9-9f7a-61bad846b08d","keyword":"磨削","originalKeyword":"磨削力"},{"id":"92216557-0895-4708-bd60-dd69790c2171","keyword":"磨削深度","originalKeyword":"磨削深度"}],"language":"zh","publisherId":"bqclkxygc201604001","title":"纳米陶瓷超声ELID复合磨削加工磨削特性研究","volume":"39","year":"2016"},{"abstractinfo":"采用三因素三水平正交试验法研究了工件进给速度、砂轮线速度、磨削深度等磨削参数对碳纤维复合材料磨削的影响,采用多元线性回归方法得到了陶瓷金刚石砂轮磨削该碳纤维复合材料的磨削经验公式.结果表明:磨削深度对切向和法向磨削的影响最大,其次是砂轮线速度,影响最小的是工件进给速度;由磨削经验公式得到的磨削数据与试验数据吻合较好.","authors":[{"authorName":"徐倩","id":"26e9bf1d-7a29-43a2-bda5-7cb6bcc937a1","originalAuthorName":"徐倩"},{"authorName":"星建民","id":"3fe7de40-5a29-43ee-9094-12d614944fae","originalAuthorName":"星建民"}],"doi":"","fpage":"52","id":"e2aabfde-b5e3-492a-9ace-98bc2f2102c0","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"2391b645-411e-4aeb-a9a5-d0d56be33e5a","keyword":"碳纤维复合材料","originalKeyword":"碳纤维复合材料"},{"id":"1a489799-c703-4a7f-bd8f-946d96a092b4","keyword":"磨削","originalKeyword":"磨削力"},{"id":"6407caa1-7e06-404c-b93a-60d10e80976f","keyword":"磨削参数","originalKeyword":"磨削参数"},{"id":"3db2c21c-3103-4589-9411-9b6442abb686","keyword":"正交试验","originalKeyword":"正交试验"}],"language":"zh","publisherId":"jxgccl201306013","title":"磨削参数对航空碳纤维复合材料磨削的影响","volume":"37","year":"2013"},{"abstractinfo":"对砂带干式磨削Ti-6Al-4V钛合金的的磨削进行了测试,分析了磨削参数对磨削的影响;用动态测力仪、三维体式显微镜、粗糙度仪和显微硬度计对磨削试样表面质量进行了分析,提出了砂带磨削工艺参数的优化方案.结果表明:在砂带干式磨削条件下,磨削随着磨削深度和工作台进给速度的增大而增加,随着砂带线速度的提高而减小;在砂带线速度为15 m·s-1,工作台进给速度为315 mm·min-1,磨削深度为0.025~0.1 mm时,合金表面粗糙度R.≤0.35μm.","authors":[{"authorName":"霍文国","id":"181230f9-06af-4928-b763-fef251cece93","originalAuthorName":"霍文国"},{"authorName":"徐九华","id":"cd6d8841-3d6c-44fe-9f39-64d758cf58d1","originalAuthorName":"徐九华"},{"authorName":"傅玉灿","id":"f17703f5-fbca-4c27-822f-28d3690b6661","originalAuthorName":"傅玉灿"}],"doi":"","fpage":"19","id":"00b07b7d-cddd-4fa2-94d7-9d4e6e054588","issue":"12","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"913881b3-eefe-4256-9946-6af022904477","keyword":"Ti-6Al-4V钛合金","originalKeyword":"Ti-6Al-4V钛合金"},{"id":"805aba9f-54d4-44be-aef6-c4f59eff0b56","keyword":"砂带磨削","originalKeyword":"砂带磨削"},{"id":"8e2605e8-eef5-4368-a631-ae9b09a89973","keyword":"磨削","originalKeyword":"磨削力"}],"language":"zh","publisherId":"jxgccl200812006","title":"砂带干式磨削Ti-6Al-4V钛合金的磨削","volume":"32","year":"2008"},{"abstractinfo":"玻璃纤维增强复合材料具有非均质性、各向异性,其可磨削性能与传统金属材料有很大不同.采用两种砂轮对手糊成型高强玻璃纤维增强环氧树脂复合材料层合板进行磨削性能研究,对磨削和表面粗糙度进行了测量与分析.随着磨削深度的增加,磨削分力比先增加后减小;随着转速的提高和磨粒尺寸的减小,磨削分力比减小.玻璃纤维增强复合材料的磨削性能比金属材料差,比陶瓷材料好.","authors":[{"authorName":"张秀丽","id":"cda535fd-eae6-4d8b-9e52-dc807cdba5f7","originalAuthorName":"张秀丽"},{"authorName":"王栋","id":"d5d0986f-053c-4ab1-9e39-3b3afaf58f5f","originalAuthorName":"王栋"},{"authorName":"张全国","id":"e8f92a78-afc5-45ef-9e06-814d1272da25","originalAuthorName":"张全国"},{"authorName":"张恒","id":"a3fbccdb-1392-4193-a833-d7503af66256","originalAuthorName":"张恒"}],"doi":"","fpage":"129","id":"a62b0f16-cae1-4c1a-a488-bd5224330253","issue":"18","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3d63880d-f368-4b8f-bfbb-12c646716b32","keyword":"玻璃纤维增强复合材料","originalKeyword":"玻璃纤维增强复合材料"},{"id":"06e07c57-28bb-4b40-8748-f02c9f2adbc6","keyword":"干式磨削","originalKeyword":"干式磨削"},{"id":"e9d93025-a98f-41b7-9de3-4d71be3e4c46","keyword":"加工参数","originalKeyword":"加工参数"},{"id":"f4a782f1-542c-4b0a-9db2-f9b3a9179552","keyword":"磨削","originalKeyword":"磨削力"}],"language":"zh","publisherId":"cldb201318033","title":"玻璃纤维增强复合材料的干式磨削加工技术研究","volume":"27","year":"2013"},{"abstractinfo":"研究纳米陶瓷材料磨削加工磨削磨削温度及表面粗糙度等表面特征,获取高质量的加工表面,是该工程材料得以广泛应用的重要前提.对纳米ZrO2陶瓷材料平板施加二维超声振动进行磨削,超声振动产生的空化作用、泵吸作用以及涡流作用,能一定程度上改善材料的加工性能、提高加工表面质量,实现纳米陶瓷材料的精密高效加工.结果表明:二维超声振动磨削与普通磨削相比,实际磨削磨削温度相对较低且随切削深度增加增长速度较慢;选取不同的磨粒粒度对纳米陶瓷材料进行磨削加工,超声振动加工的表面粗糙度值与普通磨削表面的粗糙度值相比相对较小.","authors":[{"authorName":"邵水军","id":"1b277fc7-779c-4eb0-a3a5-5283d2f52cf4","originalAuthorName":"邵水军"},{"authorName":"赵波","id":"334e5ef2-7553-4bf1-97fd-a73da4314f81","originalAuthorName":"赵波"}],"doi":"","fpage":"1","id":"a243d553-3f97-46a3-aaea-b974a0c763bb","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"f576b7de-8f61-4517-8367-ac7b3dce6a09","keyword":"纳米ZrO2陶瓷","originalKeyword":"纳米ZrO2陶瓷"},{"id":"39bdfb7a-1443-4c6b-8801-9fc6e7959393","keyword":"二维超声振动磨削","originalKeyword":"二维超声振动磨削"},{"id":"83d952de-3668-462e-8db6-78e6e05c17e3","keyword":"磨削","originalKeyword":"磨削力"},{"id":"3c5fb330-395f-46c0-8ce6-eb47155a12bd","keyword":"磨削温度","originalKeyword":"磨削温度"},{"id":"7779ced1-8c85-4edc-9655-cfb60bc552d0","keyword":"表面质量","originalKeyword":"表面质量"}],"language":"zh","publisherId":"bqclkxygc201402001","title":"纳米陶瓷材料超声振动磨削加工表面质量研究","volume":"37","year":"2014"},{"abstractinfo":"采用树脂结合剂金刚石砂轮,通过对2D-C/SiC复合材料高速深磨磨削加工,并对磨削表面形貌和亚表面损伤进行了观察。提出了2D-C/SiC摩擦层(表面)的磨削理论公式,讨论了磨削加工用量对磨削磨削比的影响。实验结果表明,2D-C/SiC复合材料的高速深磨材料去除机制与其自身的微观结构相关,既不同于塑性材料,也不同于普通脆性材料,而是以脆性断裂去除为主。","authors":[{"authorName":"刘杰","id":"9035deb1-18ee-4fa4-a3f2-15ef080bdec2","originalAuthorName":"刘杰"},{"authorName":"李海滨","id":"4cc78b23-1742-4455-976c-a2929dcaee5c","originalAuthorName":"李海滨"},{"authorName":"张小彦","id":"c2143e49-4202-46f1-b127-c9f763f0a38e","originalAuthorName":"张小彦"},{"authorName":"洪智亮","id":"ac71e3ab-5468-41c0-8f83-be401a731058","originalAuthorName":"洪智亮"},{"authorName":"何宗倍","id":"5f119aee-f9fd-4877-83fc-23b54d1c593e","originalAuthorName":"何宗倍"},{"authorName":"张毅","id":"37e02a3b-821c-442d-baa4-9506c2343269","originalAuthorName":"张毅"},{"authorName":"刘小瀛","id":"323fcc74-fd8b-4e39-b0ee-3a6ceab1eac0","originalAuthorName":"刘小瀛"}],"doi":"","fpage":"113","id":"b8a16f03-db69-42a7-b326-57fdf94b75a2","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"2a0d5954-fb78-44be-967c-849f65bf546c","keyword":"高速深磨","originalKeyword":"高速深磨"},{"id":"ae99bbf0-fe70-417f-9a47-6926201cbe74","keyword":"C/SiC","originalKeyword":"C/SiC"},{"id":"653b72de-2d80-45dc-8f8b-8f8aa9fc7025","keyword":"磨削","originalKeyword":"磨削力"},{"id":"b2270867-9879-456f-bcb4-927ce856dd2e","keyword":"磨削损伤","originalKeyword":"磨削损伤"},{"id":"ed117ebb-ba83-4441-80a1-5d3a2b9dfb4b","keyword":"去除机制","originalKeyword":"去除机制"}],"language":"zh","publisherId":"fhclxb201204019","title":"2D-C/SiC高速深磨磨削特性及去除机制","volume":"29","year":"2012"},{"abstractinfo":"建立有限元模型对C/SiC复合材料单颗金刚石磨粒平面磨削加工过程进行数值模拟,结合Abaqus有限元分析软件建立材料本构模型,仿真分析单颗粒平面磨削过程中不同砂轮转速和磨削深度对磨削、工件表面形貌的影响规律.结果表明,随着砂轮转速的提高,法向及切向磨削变小,表面质量提高,亚表面裂纹变小;随着磨削深度的增加,法向及切向磨削变大,表面质量变差,亚表面裂纹变深.该研究为陶瓷基复合材料磨削加工机理的研究及磨削工艺参数优化,提供了高效的方法和理论依据.","authors":[{"authorName":"李巾锭","id":"a1065782-6fe2-447a-b7b0-2afe98f9e1c0","originalAuthorName":"李巾锭"},{"authorName":"任成祖","id":"a70d78be-c967-44dd-9dd1-38c2648fd1f2","originalAuthorName":"任成祖"},{"authorName":"吕哲","id":"653e9d6f-1295-4300-a855-a73fae7a0b60","originalAuthorName":"吕哲"},{"authorName":"张立峰","id":"66c59042-68ef-4642-9d0c-d759570a5810","originalAuthorName":"张立峰"}],"doi":"","fpage":"686","id":"6c1471b3-6c7b-4d12-b719-cf153eb6e07b","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"54b42288-1caf-401c-8bd7-eec80c137ce3","keyword":"平面磨削","originalKeyword":"平面磨削"},{"id":"657bb6da-ea67-4d95-b2aa-cbab0c2f4556","keyword":"陶瓷基复合材料","originalKeyword":"陶瓷基复合材料"},{"id":"203b8f1f-cf2a-496c-afcf-07a2c13d724f","keyword":"磨削仿真","originalKeyword":"磨削仿真"},{"id":"bebb2fa0-1002-4280-a4df-652fe05daebe","keyword":"磨削","originalKeyword":"磨削力"},{"id":"b3ac2b41-3056-4ec1-ad43-1ed5c7e88e21","keyword":"表面形貌","originalKeyword":"表面形貌"}],"language":"zh","publisherId":"clkxygc201405013","title":"单颗粒金刚石平面磨削C/SiC复合材料的有限元仿真","volume":"32","year":"2014"},{"abstractinfo":"基于非局部理论,建立了纳米复相陶瓷材料在超声振动下的非局部本构模型,通过对超声振动条件下纳米复相陶瓷磨削试验研究,获得超声频率对磨削的影响规律以及非局部衰减率的变化规律,并对磨削表面三维微观轮廓特征进行观测分析.试验结果表明,试件在所研究超声振动频率范围内磨削出现衰减现象,且随频率的增大更为明显,超声振动大大减小了磨削,表面质量得到明显改善,更容易实现延性域加工.","authors":[{"authorName":"卞平艳","id":"2bc99706-f934-45af-9261-b7f05e360e9c","originalAuthorName":"卞平艳"},{"authorName":"赵波","id":"f5013a80-b132-4a33-b264-0bcd7838dd0d","originalAuthorName":"赵波"}],"doi":"","fpage":"512","id":"e492a14b-357b-42a3-b53d-6c61a71c2ec1","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"bc16e8e9-2adf-468f-a128-068815d64945","keyword":"非局部理论","originalKeyword":"非局部理论"},{"id":"ab66f86e-74b9-4c60-8fa6-4c32a00f4d99","keyword":"超声振动","originalKeyword":"超声振动"},{"id":"91d48199-f795-4b7c-839a-e530ac050b50","keyword":"弹性核函数","originalKeyword":"弹性核函数"},{"id":"e9369242-3887-45f2-95dc-6d33fbf1829f","keyword":"纳米复相陶瓷","originalKeyword":"纳米复相陶瓷"},{"id":"819be70b-3930-45b2-91f2-4e29bc3ca4bc","keyword":"磨削","originalKeyword":"磨削力"},{"id":"ab7d4b27-f1dd-457d-9141-635aedc17c61","keyword":"三维微观轮廓特征","originalKeyword":"三维微观轮廓特征"}],"language":"zh","publisherId":"gsytb201303031","title":"基于非局部理论的纳米复相陶瓷超声磨削试验研究","volume":"32","year":"2013"}],"totalpage":516,"totalrecord":5157}