{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为探讨硅橡胶/镍粉复合材料的力敏性能,研究了不同掺量镍粉填充硅橡胶复合材料试样的电阻随拉应力、压应力的变化规律,并结合扫描电镜观察进行了机理分析.研究结果表明,所制备的硅橡胶/镍粉复合材料试样的电阻随拉、压应力的增加而减小,镍粉掺量越大,电阻对应力变化越敏感;在2 MPa的拉、压应力作用下,硅橡胶/绦粉复合材料试样的电阻变化最大分别可达11个和12个数量级.硅橡胶/镍粉复合材料优异的力敏效应是由量子隧道效应导致的.","authors":[{"authorName":"韩宝忠","id":"e1ff88f0-fc13-45c0-9e2d-b31851026b82","originalAuthorName":"韩宝忠"},{"authorName":"周道成","id":"383eb8cd-1e2c-428f-ac0e-6e7fd8737cee","originalAuthorName":"周道成"},{"authorName":"韩宝国","id":"bc50b9ee-5c40-4833-8c6a-4df416cfb277","originalAuthorName":"韩宝国"},{"authorName":"张扬","id":"28a8de0d-eda1-4eec-956f-2676849e7eb9","originalAuthorName":"张扬"},{"authorName":"盛伯瑶","id":"2631c232-4f86-46c0-8b90-6af4cefdb7cb","originalAuthorName":"盛伯瑶"}],"doi":"","fpage":"97","id":"96ef4f57-ebdf-442f-b4a1-7eaf5a63dff4","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"cc24706d-036a-4aca-ae44-4d3396b49dd8","keyword":"镍粉","originalKeyword":"镍粉"},{"id":"689cdcae-3a1f-4439-843b-e57360884344","keyword":"硅橡胶","originalKeyword":"硅橡胶"},{"id":"45825192-03cd-4a76-b251-457bf0026328","keyword":"力敏性","originalKeyword":"力敏性"},{"id":"7b3bb0aa-5d5f-4860-b4c5-8126bf4087a1","keyword":"应力","originalKeyword":"应力"},{"id":"2f15a260-e125-4330-bf98-8330641120a8","keyword":"电阻","originalKeyword":"电阻"}],"language":"zh","publisherId":"gfzclkxygc201011026","title":"硅橡胶/镍粉复合材料的力敏性能","volume":"26","year":"2010"},{"abstractinfo":"从碳纤维增强水泥基(CFRC)材料导电机理出发,建立了一个描述CFRC材料导电性的数学模型,并推破导了这种材料电导率与材料内部微观结构参数、载流子运动参数的关系.以该模型分析CFRC材料的力敏性,其理论规律与实验结果基本一致,从而验证了CRFC导电模型的合理性.","authors":[{"authorName":"姚武","id":"8a825e36-1fd6-448b-906e-03492d9e42d2","originalAuthorName":"姚武"},{"authorName":"王瑞卿","id":"a3600bea-d94d-465a-874d-6e576f2e8d0d","originalAuthorName":"王瑞卿"}],"doi":"10.3321/j.issn:1000-3851.2006.05.023","fpage":"121","id":"3fca105a-ff9f-40b0-990b-65891bc9703b","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"d80efadf-1657-4707-b8a5-3307523052f9","keyword":"隧道效应","originalKeyword":"隧道效应"},{"id":"55f3f3c7-0f71-47b9-9e21-e949722c11be","keyword":"数学模型","originalKeyword":"数学模型"},{"id":"db1bb405-547f-4128-8008-a54ab704ffaa","keyword":"电导率","originalKeyword":"电导率"},{"id":"25675239-1805-4d94-8ca8-9f506b342c43","keyword":"力敏性","originalKeyword":"力敏性"}],"language":"zh","publisherId":"fhclxb200605023","title":"基于隧道效应的CFRC材料的导电模型","volume":"23","year":"2006"},{"abstractinfo":"以300目非晶 Fe73 Si18 B9粉体为敏感组元,硅橡胶为基体,制得了粉体含量为25%,75%及83.3%(质量分数),厚度200μm 复合薄膜;采用LYYL-500N高档型微机控制压力实验机对薄膜试样进行连续加载卸载实验,同时,使用TH2816LCR 数字电桥采集薄膜在测试频率为1 kHz,压应力加载速度分别为0.05,0.1和0.5 mm/min条件下的阻抗值Z,研究了不同粉体含量的复合薄膜的力敏特性,比较了纳米晶 FeCuNbSiB 粉体/硅橡胶复合薄膜和非晶FeSiB粉体/硅橡胶复合薄膜力敏特性。研究表明,复合薄膜在连续加载/卸载速度≤0.1 mm/min,测试频率1 kHz、压应力0.03~1.0 MPa时,具有良好的力敏稳定性和灵敏性。薄膜对于小于0.2 MP a 应力更加灵敏,在此应力范围内,薄膜中粉体含量增加,薄膜的力敏特性变化趋势相同,但薄膜的力敏敏感度增大。当薄膜中粉体含量为83.3%(质量分数),压应力由0.03增大到0.2 MPa 时,在加载过程中薄膜的 SI%由36.51%增大到82.48%,k 值由42.91减小到1.889;当应力为0.2~0.7 MPa 时,薄膜的k 值在1.889~0.6之间,应力继续增大至1 MPa 时,k 值逐渐接近0。","authors":[{"authorName":"乔宝英","id":"a1bb1f35-14ac-4ea1-8535-e02970b813d6","originalAuthorName":"乔宝英"},{"authorName":"朱正吼","id":"3a8cb430-d5a8-4fe3-841d-d8607a6b984a","originalAuthorName":"朱正吼"},{"authorName":"杜康","id":"6e0aa263-2c4e-4526-ba46-bed7c5f085af","originalAuthorName":"杜康"},{"authorName":"周佳","id":"816e96b7-03ea-46b4-9224-3c20b8569468","originalAuthorName":"周佳"},{"authorName":"黄渝鸿","id":"76602cd6-0542-4276-a8d1-210ed5c8974c","originalAuthorName":"黄渝鸿"},{"authorName":"付远","id":"21bc381b-d78c-4bdd-bf47-dad512b749fe","originalAuthorName":"付远"}],"doi":"10.3969/j.issn.1001-9731.2014.08.012","fpage":"8056","id":"028232f8-72f7-483c-9adf-1c2d122306d8","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c79cb66c-3954-4418-b8f6-3fce06a8c853","keyword":"力敏薄膜","originalKeyword":"力敏薄膜"},{"id":"8b629537-2c9f-4738-b565-5030de629cc7","keyword":"阻抗","originalKeyword":"阻抗"},{"id":"d20493dc-9a54-4fa1-bb76-01fb0a2c34be","keyword":"非晶","originalKeyword":"非晶"}],"language":"zh","publisherId":"gncl201408012","title":"FeSiB粉体/硅橡胶复合薄膜力敏特性研究","volume":"","year":"2014"},{"abstractinfo":"以 Fe73.5 Cu1 Nb3 Si13.5 B9粉体为复合相,硅橡胶为基体,制得粉体含量为83%(质量分数)、厚度200μm的复合薄膜;采用 TH2816LCR 数字电桥测试频率1kHz下薄膜的阻抗Z 随压应力σ的变化情况,用LYYL-500N高档型微机控制压力试验机对薄膜体系进行程序控制加载;薄膜采用电容方式连接。研究了复合薄膜在压应力连续加载/卸载和压应力保持加载/卸载状况下的力敏特性。研究表明,复合薄膜在连续加载/卸载速度≤0.5mm/min 和保压加载/卸载条件下,当测试频率1kHz、压应力0.2~1.0MPa 时,具有良好的力敏稳定性和灵敏性。随着应力σ增大,阻抗Z 呈非线性下降,SI%值为6%~23%,灵敏精度k值为2~0.2,测试标准偏差稳定在0.02~0.05,薄膜对于<0.3MPa应力更加灵敏。增加测试频率可以提高薄膜体系的力敏灵敏度。在压应力0.2~1.0MPa范围内,薄膜弹性后效现象显著,导致薄膜加载Z-σ曲线与卸载曲线不重合。","authors":[{"authorName":"周佳","id":"572b905b-4297-4acf-9c2e-369a428d31fc","originalAuthorName":"周佳"},{"authorName":"朱正吼","id":"8374f602-8e14-4052-89ff-690a7f7ae43b","originalAuthorName":"朱正吼"},{"authorName":"杜康","id":"179bfb8a-1ae1-461e-9d79-448899abbc99","originalAuthorName":"杜康"},{"authorName":"付远","id":"88850d68-eaf3-47d8-86f0-db443c345131","originalAuthorName":"付远"},{"authorName":"黄渝鸿","id":"cc5bb46e-2533-4a6b-84c8-34835c286e79","originalAuthorName":"黄渝鸿"},{"authorName":"乔宝英","id":"9a499cf3-6d88-4ef0-8112-d68ade11946b","originalAuthorName":"乔宝英"}],"doi":"10.3969/j.issn.1001-9731.2013.21.014","fpage":"3117","id":"51274d9d-2077-46dc-aeb4-6f018cb316f0","issue":"21","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"7bab567d-8348-44f3-9039-06acca988b64","keyword":"力敏薄膜","originalKeyword":"力敏薄膜"},{"id":"8cf31c68-67b9-46d1-a3d9-8d3c1977cefc","keyword":"阻抗","originalKeyword":"阻抗"},{"id":"11805b59-1f42-4873-945f-4b4150873a22","keyword":"弹性后效","originalKeyword":"弹性后效"}],"language":"zh","publisherId":"gncl201321014","title":"83wt%FeCuNbSiB粉体/硅橡胶复合薄膜力敏特性","volume":"","year":"2013"},{"abstractinfo":"以粒径为45μm 的 Fe73.5 Cu1 Nb3 Si13.5 B9非晶粉体为复合相,丁基橡胶为基体相,利用模压成型法制备了粉体含量为85%、厚度为150和200μm 的复合薄膜。采用LYYL-500N高档型微机控制压力试验机对薄膜试样进行连续加载/卸载实验(速度分别为0.1,0.5和1.0 mm/min),用 TH2816LCR 数字电桥测试频率1和50 kHz下薄膜的阻抗Z 值。研究了加载/卸载速度、测试频率、薄膜厚度和环境温度对 Fe-CuNbSiB粉体/丁基橡胶力敏特性的影响。研究表明,复合薄膜在v=0.1 mm/min 时,其重复性最好,在加载过程中,应力灵敏度|k|值随着应力的增大呈现先增大后减小的变化趋势,卸载过程中,|k|值随着应力的逐渐减小而增大。在1 kHz测试频率下复合薄膜的力敏灵敏度高于50 kHz。相同测试条件下,厚度为200μm的复合薄膜的力敏灵敏性略优于150μm 的。在39.5~80℃温度范围内,随着温度的升高复合薄膜的灵敏度越高。","authors":[{"authorName":"周佳","id":"3b6925cc-0dad-4406-a1b0-31512ceeee7d","originalAuthorName":"周佳"},{"authorName":"朱正吼","id":"373daa0a-d9c5-41db-a24b-8e6f0b173c80","originalAuthorName":"朱正吼"},{"authorName":"付远","id":"96e260b6-14ba-4706-a3c6-144cbf87dd65","originalAuthorName":"付远"},{"authorName":"乔宝英","id":"4898f5fc-6055-474b-9581-ba3760c7f304","originalAuthorName":"乔宝英"},{"authorName":"杜康","id":"be093a9e-3323-4031-97e4-5cf33a28f98d","originalAuthorName":"杜康"}],"doi":"10.3969/j.issn.1001-9731.2014.10.014","fpage":"10067","id":"e04ff339-8d62-48aa-b75a-38a6a08f1829","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e8c30ff0-f310-4233-98b3-a4eed8b36655","keyword":"FeCuNbSiB 粉体","originalKeyword":"FeCuNbSiB 粉体"},{"id":"05964ad7-202d-49c5-9765-a3e177523f6b","keyword":"丁基橡胶","originalKeyword":"丁基橡胶"},{"id":"e33afa51-c9d2-4e96-815c-e68742104df1","keyword":"阻抗","originalKeyword":"阻抗"},{"id":"b68bffb4-5297-4605-9bd9-1028feb104a9","keyword":"力敏特性","originalKeyword":"力敏特性"}],"language":"zh","publisherId":"gncl201410014","title":"FeCuNbSiB非晶粉体/丁基橡胶复合薄膜的力敏特性","volume":"","year":"2014"},{"abstractinfo":"以 Fe73.5 Cu1 Nb3 Si13.5 B9粉体为复合相,丁基橡胶为基体,制得粉体质量含量为80%、厚度为200μm的复合薄膜;采用 TH2816LCR 数字电桥测试频率1 kHz下薄膜的阻抗Z 随压应力σ的变化情况,用LYYL-500N高档型微机控制压力试验机对薄膜体系进行程序控制加载;薄膜体系采用电容方式连接。研究了复合薄膜在3种不同的压应力条件下连续加载/卸载的力敏特性。研究表明,复合薄膜在连续加载/卸载速度≤0.5 mm/min和保压加载/卸载条件下、测试频率1 kHz、压应力0.1~1.0 MPa 时,复合薄膜具有良好的力敏稳定性和灵敏性。随着应力σ增大,阻抗Z 呈非线性下降,SI%值为6%~23%,灵敏精度k=Z’(σ)值范围1.9~0.02,测试标准偏差稳定在0.02~0.01,薄膜对于<0.3 MPa 应力更加灵敏。增加测试频率可以提高薄膜体系的力敏灵敏度。在压应力0.2~1.0 MPa范围内,薄膜弹性后效现象显著,导致薄膜加载Z-σ曲线与卸载曲线不重合。","authors":[{"authorName":"付远","id":"28a4af76-07c5-4055-8df2-63ef0ca9e85e","originalAuthorName":"付远"},{"authorName":"朱正吼","id":"cacf5ab9-2a8f-4a35-a6cb-80886b324c72","originalAuthorName":"朱正吼"},{"authorName":"乔宝英","id":"de1ccf4b-2283-44bb-bfd3-d55c49709266","originalAuthorName":"乔宝英"}],"doi":"10.3969/j.issn.1001-9731.2013.24.005","fpage":"3540","id":"f89982f2-6337-492b-b28d-aaee5ea07c9b","issue":"24","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c1b69f58-cdda-4a71-aa9b-284e5e8347e6","keyword":"力敏薄膜","originalKeyword":"力敏薄膜"},{"id":"6126589a-366b-4c44-8519-f85297887003","keyword":"阻抗","originalKeyword":"阻抗"},{"id":"e6f56767-7966-499a-8b8a-9fabf58ad7c5","keyword":"弹性后效","originalKeyword":"弹性后效"},{"id":"ee601eb0-edad-4346-bf6c-4b72d2167d83","keyword":"丁基橡胶","originalKeyword":"丁基橡胶"}],"language":"zh","publisherId":"gncl201324005","title":"FeCuNbSiB粉体/丁基胶复合薄膜力敏特性","volume":"","year":"2013"},{"abstractinfo":"根据目前接触压力测量的研究现状和发展趋势,提出了一种新型柔性力敏导电胶敏感材料用于接触压力测量的思想.研究了柔性力敏导电胶的导电机理和力敏效应,对炭黑/硅橡胶/纳米二氧化硅复合体系的压阻特性,迟滞特性及时间响应特性进行了实验和分析.表明了这种可液体成型的新型力敏导电胶敏感材料具有较好的电学和力学性能,且工艺简单,成本低,可任意成型,适应于接触压力特别是柔性接触压力的测量场合.","authors":[{"authorName":"黄英","id":"478d05e7-ffa9-462f-960b-b6efe3db2608","originalAuthorName":"黄英"},{"authorName":"高峰","id":"89cfddbf-c3e0-44da-8605-53fcc56ee6dc","originalAuthorName":"高峰"},{"authorName":"仇怀利","id":"f07cc771-9417-40de-baa3-3a33e8347ecf","originalAuthorName":"仇怀利"},{"authorName":"付秀兰","id":"27aca30a-67f9-476a-aaf2-3acf33f59325","originalAuthorName":"付秀兰"},{"authorName":"余晓芬","id":"dd0335af-aacf-44ea-bb38-b04524020258","originalAuthorName":"余晓芬"}],"doi":"","fpage":"177","id":"bc396b03-a44a-470c-b333-b60062908502","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"376f0589-51cb-4817-807f-3590b6995305","keyword":"柔性","originalKeyword":"柔性"},{"id":"17038280-7fa6-42af-9416-1e74a17627bc","keyword":"接触压力","originalKeyword":"接触压力"},{"id":"5751c416-cb27-46f7-bbf4-452cc0ec5ac0","keyword":"力敏导电胶","originalKeyword":"力敏导电胶"}],"language":"zh","publisherId":"gncl200802001","title":"用于接触压力测量的柔性力敏导电胶研究","volume":"39","year":"2008"},{"abstractinfo":"以通用有效介质理论为基础,给出了炭黑填充导电橡胶(炭黑/橡胶)的力敏传感器灵敏系数计算方程。采用该方程并结合应变和压阻效应对“负压力一电阻特性”(NPC)的影响程度,分析了力敏导电炭黑/橡胶的灵敏系数和工作原理。结果表明:炭黑体积分数在临界体积分数附近时,力敏导电炭黑/橡胶的灵敏系数在2.5-13之间,其工作原理主要为压阻效应。当炭黑体积分数在渗流区时,灵敏系数在2.5-4.5之间,其工作原理与接触压力的大小有关。压力较小时,其工作原理主要为压阻效应;压力较大时,其工作原理主要为应变效应。炭黑体积分数在传导区时,灵敏系数在2.O-2.5之间,其工作原理主要为应变效应。","authors":[{"authorName":"刘平","id":"bec970be-7d3a-4f3e-91d5-0a7f443daae8","originalAuthorName":"刘平"},{"authorName":"黄英","id":"55bc746c-7d94-4ae6-a0fa-9de91d85f36f","originalAuthorName":"黄英"},{"authorName":"廉超","id":"e273478c-6951-4aee-b30f-41a1340eab51","originalAuthorName":"廉超"},{"authorName":"蒋红生","id":"830c30c7-37b1-4ca3-9dbb-72e265f05999","originalAuthorName":"蒋红生"},{"authorName":"葛运建","id":"e42ed543-0711-49da-ac2d-5a4196d32710","originalAuthorName":"葛运建"}],"doi":"","fpage":"16","id":"9afcae55-ecdc-4314-bb29-2420c96eff01","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"732572cf-29b9-41b7-bb61-b169a131cb42","keyword":"应变效应","originalKeyword":"应变效应"},{"id":"163d28a9-d3d7-41a7-88be-5c2256174420","keyword":"压阻效应","originalKeyword":"压阻效应"},{"id":"41013375-a9ba-41ff-a192-a161ea0c5bb0","keyword":"炭黑","originalKeyword":"炭黑"},{"id":"476fea83-fd8e-4c61-917a-5d88e8482cc4","keyword":"导电橡胶","originalKeyword":"导电橡胶"},{"id":"f5f706ed-1d61-4e68-9eec-207a149d6b19","keyword":"灵敏系数","originalKeyword":"灵敏系数"},{"id":"4a706368-61e0-4b73-8377-81ddb6d67327","keyword":"传感器","originalKeyword":"传感器"}],"language":"zh","publisherId":"fhclxb201201003","title":"炭黑填充导电橡胶的力敏传感器灵敏系数","volume":"29","year":"2012"},{"abstractinfo":"以通用有效介质理论为基础,给出了,炭黑填充导电橡胶(炭黑/橡胶)的力敏传感器灵敏度计算方程.采用该方程并结合形变和压阻效应,分析了影响力敏导电炭黑/橡胶的灵敏度的主要参数.结果表明:炭黑体积分数是影响力敏导电炭黑/橡胶的灵敏度的主要参数.当炭黑体积分数在临界体积分数附近时,力敏导电炭黑/橡胶的灵敏度为0.1~11.5 MPa-1,其敏感机制主要为压阻效应.当炭黑体积分数在渗流区时,灵敏度为0.2~3.6 MPa-1,其敏感机制还与接触压力的大小有关,压力较小时,主要为压阻效应;压力较大时,主要为应变效应.若炭黑体积分数在传导区,灵敏度为0.3~1.7 MPa-1,其敏感机制主要为应变效应.","authors":[{"authorName":"刘平","id":"f3dcf098-2f33-42c6-bd30-21df9bad1c3e","originalAuthorName":"刘平"},{"authorName":"黄英","id":"99f69030-4cab-4207-a5de-3ca31c6e4a84","originalAuthorName":"黄英"},{"authorName":"刘秀梅","id":"da48f116-8262-4eaf-a7ba-3836a21ba8ee","originalAuthorName":"刘秀梅"},{"authorName":"蔡文婷","id":"e2489f0e-5573-41f1-9c92-aa859fb6afcf","originalAuthorName":"蔡文婷"},{"authorName":"李锐琦","id":"1ff94367-4cc0-4c84-9a59-dea476b778a6","originalAuthorName":"李锐琦"},{"authorName":"王大月","id":"7db5ad57-b271-40fd-b862-3805a51689a3","originalAuthorName":"王大月"}],"doi":"","fpage":"51","id":"69a94a12-4be8-4425-b99a-4fe63b5302a3","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"5a3c1de0-468a-48bb-b757-f1c84321e67d","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"7f807cc1-7821-427c-beb0-353eb655ee2c","keyword":"灵敏度","originalKeyword":"灵敏度"},{"id":"a8f7a25f-9425-4a34-8ca8-c1f3556a0613","keyword":"压力","originalKeyword":"压力"},{"id":"9fc90614-190d-45c9-b1e2-0e70c87fcf91","keyword":"炭黑","originalKeyword":"炭黑"},{"id":"59844735-e965-499d-8d18-7cd9ed0b98e9","keyword":"导电橡胶","originalKeyword":"导电橡胶"},{"id":"366680f9-decd-45d1-a42c-744bc2c5a2aa","keyword":"柔性触觉传感器","originalKeyword":"柔性触觉传感器"}],"language":"zh","publisherId":"fhclxb201303009","title":"基于炭黑填充导电橡胶的力敏传感器的灵敏度","volume":"30","year":"2013"},{"abstractinfo":"以60~100 nm 的 FeNi 粉体为应力敏感元、硅橡胶为柔性基体,压制成型了粉体分布均匀、粉体含量30.6%(质量分数)、厚度200μm 的薄膜,在连续加载/卸载速度为0.1 mm/min、测试频率1 kHz 条件下,研究了正应力和综合应力两种受力条件下薄膜的力敏特性.研究结果表明,通过过渡溶剂液相混合方法可实现纳米级FeNi粉体在薄膜中均匀分布;在正应力条件下,加载过程中σ<0.2 MP a 时,薄膜的灵敏精度|k|值>50,当σ为0.2~0.4 MPa,|k|值介于37~49之间,薄膜对<0.2 MPa的正应力敏感;当综合应力σ<0.1 MPa 时,薄膜灵敏精度|k|值在60以上,薄膜对<0.1 MP a的综合应力敏感;在综合应力加载/卸载条件下,薄膜的弹性后效现象显著,导致力敏稳定性较差;在正应力条件下的力敏特性优于综合应力条件下的力敏特性.","authors":[{"authorName":"赵辉","id":"287cf3c9-8cda-4f81-8d22-5a89bbd918b5","originalAuthorName":"赵辉"},{"authorName":"朱正吼","id":"e21df57e-2b30-454f-8cee-293f19f90094","originalAuthorName":"朱正吼"}],"doi":"10.3969/j.issn.1001-9731.2015.11.021","fpage":"11098","id":"ea041137-47bb-413b-87df-fd563f1585a8","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"f4adefa8-7c5c-4646-8583-6aa66717c07a","keyword":"FeNi 粉体","originalKeyword":"FeNi 粉体"},{"id":"401da673-1ef8-4d43-a5af-92387b39c456","keyword":"纳米级","originalKeyword":"纳米级"},{"id":"0621aaa3-5349-41c7-acc6-51ac53423748","keyword":"液体硅橡胶","originalKeyword":"液体硅橡胶"},{"id":"fa08cad0-8086-400c-b9ec-bccf19440e6a","keyword":"力敏特性","originalKeyword":"力敏特性"}],"language":"zh","publisherId":"gncl201511021","title":"纳米级FeNi粉体/SiR薄膜的制备及力敏特性研究?","volume":"","year":"2015"}],"totalpage":5119,"totalrecord":51181}