{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在温和条件下,将原位合成的 Na[Co(CO)4]配合物首次用于催化一氯丙酮羰基化合成乙酰乙酸甲酯,考察了不同的碱性试剂、一氧化碳压力及反应温度对产物选择性和收率的影响,优化了反应条件,并探讨了可能的反应机理.","authors":[{"authorName":"周浩","id":"385256da-e605-4f54-bddf-ec8d7b92784c","originalAuthorName":"周浩"},{"authorName":"姜玄珍","id":"922d399a-cd65-4fa0-9be9-dcb0e9d24fa4","originalAuthorName":"姜玄珍"}],"doi":"","fpage":"257","id":"888c6c9d-a073-49ae-a29a-271f32a64bfa","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"9510a1e9-1189-4aa1-9eb8-e8150bb9aed5","keyword":"一氯丙酮","originalKeyword":"一氯丙酮"},{"id":"68734bc0-475c-446f-a300-6feff910defd","keyword":"羰基化","originalKeyword":"羰基化"},{"id":"c34e5ed7-500b-44a1-818e-af8c70e17ee8","keyword":"乙酰乙酸甲酯","originalKeyword":"乙酰乙酸甲酯"},{"id":"11c7c78d-eed3-4dbd-b1e0-cc0b0294ce97","keyword":"钴配合物","originalKeyword":"钴配合物"}],"language":"zh","publisherId":"cuihuaxb200404003","title":"钴配合物催化一氯丙酮羰基化合成乙酰乙酸甲酯","volume":"25","year":"2004"},{"abstractinfo":"以四元芳香族胺类化合物及顺丁烯二酸酐为原料合成了一种可溶于丙酮,微溶于乙酸乙酯的四马来酰亚胺(TMI),280℃固化1h,其热分解温度达527℃,并且有良好的工艺性能和力学性能.","authors":[{"authorName":"张斌","id":"6b16a7ba-3c0b-4c3a-aaf1-69f9ed2493fe","originalAuthorName":"张斌"},{"authorName":"张志谦","id":"b14758dc-21ff-48ca-8226-f7bd4ad405b5","originalAuthorName":"张志谦"},{"authorName":"王超","id":"71f6ae97-770a-4fc5-aac4-0d9a8ddc601c","originalAuthorName":"王超"},{"authorName":"李奇力","id":"84c991aa-cca0-4e81-a686-c452d0ee1a6f","originalAuthorName":"李奇力"},{"authorName":"关长参","id":"276dd0f0-bc7f-44c1-99ca-25a635cc7075","originalAuthorName":"关长参"}],"doi":"10.3321/j.issn:1000-3851.1998.04.005","fpage":"24","id":"60f20d52-8a76-49c2-b15d-14f67830e790","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"ef795a9d-a64a-4d46-a4c1-dd56f398d6ef","keyword":"马来酰亚胺","originalKeyword":"马来酰亚胺"},{"id":"5ffd3a05-6212-43e3-8601-e1809ba26051","keyword":"溶解","originalKeyword":"溶解"},{"id":"8b68d403-a66f-4c51-8a18-1b2cdca1d111","keyword":"丙酮","originalKeyword":"丙酮"},{"id":"2aa4a69c-7d0a-4aaf-b3d9-a62a62e7abaa","keyword":"热分解温度","originalKeyword":"热分解温度"}],"language":"zh","publisherId":"fhclxb199804005","title":"一种可溶于丙酮的四马来酰亚胺","volume":"15","year":"1998"},{"abstractinfo":"生物质能具有绿色环保、可再生、来源广泛和安全性高等优点,成为当前的研究热点.作为生物柴油的主要副产物,甘油是一种重要的生物质平台化合物.甘油的高效利用,不仅能够获得重要的精细化学品及聚合物,也可以延长生物柴油的产业链,降低其生产成本,增加其市场竞争力.丙酮酸是一种弱有机酸,为生物体内葡萄糖分解代谢的中间产物,在生物能量代谢和物质代谢过程中起着重要的枢纽作用.同时,由于它同时含有羧基和酮羰基,具有很强的反应性,可参与多种化学反应,在化学工业中有广泛应用.目前,工业上主要采用酒石酸脱水脱羧法生产丙酮酸,丙酮酸收率可达50–55%,但生产过程需要消耗大量的KHSO4粉末,生产成本高,且高耗能高污染,不符合可持续发展的要求.因此,利用可再生资源甘油在温和条件下生产丙酮酸显现出良好的应用前景.目前,由甘油一步法获得丙酮酸仅可通过发酵法实现,但是其规模化生产存在效率低、废弃物污染等问题.因此,研究化学方法由甘油一步制备丙酮酸可行也十分必要.本课题组以Pt/AC或Cu-Pt/AC为催化剂进行甘油氧化制备乳酸的研究,所得产物中几乎未检出丙酮酸;当以Pb-Pt/C为催化剂进行乳酸脱氢氧化制备丙酮酸,可获得较高选择性的丙酮酸.因此,本文通过向Pt/AC催化剂中引入Pb助剂,以期调变甘油氧化的产物分布,从而获得相对高的丙酮酸选择性.通过浸渍-沉积沉淀法(Im-DP)制备了一系列不同Pb载量(1–7.0 wt%)的xPb-5Pt/AC-Im-DP催化剂,并采用不同方法制备了一系列5Pb-5Pt/AC催化剂,用于在温和条件下甘油选择性氧化制备丙酮酸反应中.结果表明,Pb载量和催化剂制备方法都对其催化活性有显著影响.当xPb-5Pt/AC-Im-DP催化剂中Pb载量为1%时,甘油转化率和丙酮酸选择性均较单金属5Pt/AC催化剂高,但当Pb载量继续升高至3%及以上时,甘油转化率明显下降.我们推测这与Pb3(CO3)2(OH)2物种的形成有关.采用该方法制备催化剂时,Pb载量宜为5.0 wt%.保持Pt和Pb载量均为5.0 wt%,采用共沉积沉淀(Co-DP)、共浸渍(Co-Im)、以及对催化剂进行500oC氩气焙烧等,制备了具有Pb3(CO3)2(OH)2物种、铂铅合金物种(PtPb和PtxPb)和两物种均没有的5Pb-5Pt/AC催化剂.通过评价它们的催化性能,进一步探究了Pb3(CO3)2(OH)2物种、铂铅合金物种、表面金属价态与催化剂活性的关系.实验表明,Pb3(CO3)2(OH)2和表面Pb0物种不利于甘油的转化,铂铅合金对甘油转化有一定的促进作用,对丙酮酸生成显现出明显促进作用.通过对Co-DP、Im-DP催化剂进行500oC氩气焙烧,能够除去Pb3(CO3)2(OH)2物种,同时形成铂铅合金.综上,本文在温和条件下,采用Pb-Pt/AC催化剂进行甘油选择性氧化制备丙酮酸反应.采用优化的方法制备的5Pb-5Pt/AC催化剂在90oC条件下反应10 h,丙酮酸收率可达18.4%,这是目前甘油一步法氧化制备丙酮酸的最高值.进一步优化反应条件、催化剂组成与结构,探索反应机理仍十分必要.","authors":[{"authorName":"张晨","id":"931373ca-cbe1-41e3-9474-bf43c61a536c","originalAuthorName":"张晨"},{"authorName":"王涛","id":"4083e43d-a213-4876-b5c9-8a71b60c30ca","originalAuthorName":"王涛"},{"authorName":"丁云杰","id":"77aec54d-b203-421b-a852-189b13218b99","originalAuthorName":"丁云杰"}],"doi":"10.1016/S1872-2067(17)62835-3","fpage":"928","id":"cf4ab1bb-1fe7-4f09-bf55-4f3e53065470","issue":"5","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"12cc3c07-7714-49f1-aac0-ee5fce5b56b1","keyword":"甘油氧化","originalKeyword":"甘油氧化"},{"id":"070c7e92-a00c-4d13-a5e4-ec2486468f5f","keyword":"丙酮酸","originalKeyword":"丙酮酸"},{"id":"11a6fc77-23b1-4c82-88b9-7491e791186e","keyword":"铅助剂","originalKeyword":"铅助剂"},{"id":"6020a2ef-414e-4851-9afd-76224c943ea7","keyword":"铂","originalKeyword":"铂"},{"id":"bfca0f70-e536-4b13-bc87-914e24e46af7","keyword":"活性炭","originalKeyword":"活性炭"}],"language":"zh","publisherId":"cuihuaxb201705018","title":"Pb-Pt/AC催化甘油一步法制备丙酮酸","volume":"38","year":"2017"},{"abstractinfo":"将新型氯化钴/吡嗪-2-羧酸钾催化体系用于苄基氯双羰化反应,并对反应条件进行了优化. 结果表明,最佳反应条件为: 氯化钴浓度0.03 mol/L,吡嗪-2-羧酸(Pzca)浓度0.156 mol/L,n(Pzca)/n(KOH)=1,n(Ca(OH)2)/n(苄基氯)=2.7,V(1,4-二氧六环)/V(H2O)=5,反应温度70 ℃,CO压力2.0 MPa,反应时间10 h,此时β-苄基-α-苯丙酮酸的产率为77.3%,双羰化选择性为99.6%. 该催化体系能有效地抑制单羰化反应,双羰化反应的选择性和苄基氯转化率都较高. 同时对该体系的催化活性体进行了初步解释,并用红外光谱和质谱对产物结构进行了表征.","authors":[{"authorName":"朱康玲","id":"199aa167-741c-4e94-a609-7f3f38057c11","originalAuthorName":"朱康玲"},{"authorName":"李美清","id":"7b41bf35-ce84-4302-9b33-727e2d11b93b","originalAuthorName":"李美清"},{"authorName":"李琳","id":"e01f7ce3-d146-4b3d-a6f9-38fdf31db176","originalAuthorName":"李琳"},{"authorName":"吴方勇","id":"68768835-d5f6-43bf-916d-ae5d0d1347ac","originalAuthorName":"吴方勇"},{"authorName":"李光兴","id":"234109dc-8665-4df0-a645-a39b81dda637","originalAuthorName":"李光兴"}],"doi":"","fpage":"563","id":"d89332c9-1591-48b1-873b-c6ecdb972e1b","issue":"7","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"29f9a81f-c027-482e-953b-ecaebe4b8fd3","keyword":"吡嗪-2-羧酸钾","originalKeyword":"吡嗪-2-羧酸钾"},{"id":"fdb441ae-654d-4d66-abfb-02771fc3604c","keyword":"钴配合物","originalKeyword":"钴配合物"},{"id":"327e3b21-b3c7-4f6c-95d3-baed2cbd751f","keyword":"苄基氯","originalKeyword":"苄基氯"},{"id":"fdbba30e-a31b-4534-a138-e6a2c8c76060","keyword":"双羰化","originalKeyword":"双羰化"},{"id":"88682f2f-5fa0-4b7a-8b4a-a2b6f54ee60b","keyword":"β-苄基-α-苯丙酮酸","originalKeyword":"β-苄基-α-苯丙酮酸"}],"language":"zh","publisherId":"cuihuaxb200507009","title":"氯化钴/吡嗪-2-羧酸钾体系催化苄基氯双羰化合成β-苄基-α-苯丙酮酸","volume":"26","year":"2005"},{"abstractinfo":"Mannich碱是较普遍的酸化缓蚀剂之一,其分子结构对缓蚀性能影响较大。以苄叉丙酮为活泼氢化合物,与多聚甲醛、环己胺通过Mannich反应合成了一种新型Mannich碱缓蚀剂M1,采用失重法、极化曲线、交流阻抗、原子力显微镜等研究了其在18%HCl溶液中对Q235钢的缓蚀性能。结果表明:在90℃,18%HCl中,M1含量为0.3%时,缓蚀效率达97.71%;在60℃,18%HCl中,M1含量为0.2%时,缓蚀效率达93.29%;M1为抑制阳极为主的混合型缓蚀剂,在金属表面的吸附符合Langmiur等温吸附模型,缓蚀性能优异。","authors":[{"authorName":"刘俊","id":"1eb272ac-63d2-4499-ae2f-d8e6c3b9ff12","originalAuthorName":"刘俊"},{"authorName":"付朝阳","id":"8f25e3ef-1c61-4a3b-9f21-77b59b8f7a32","originalAuthorName":"付朝阳"},{"authorName":"丁文成","id":"9ba6eeca-0aa5-45b6-a842-fb5839cf8724","originalAuthorName":"丁文成"},{"authorName":"程鹏","id":"3f640a9b-9198-48cc-810f-b4431732c53f","originalAuthorName":"程鹏"}],"doi":"","fpage":"51","id":"1a0f78ee-1d54-4840-962d-9c8fed09820c","issue":"6","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"48714631-dc58-4543-994a-cec1e3af4c2c","keyword":"缓蚀剂合成","originalKeyword":"缓蚀剂合成"},{"id":"1d2aedfb-87e3-436d-806d-4b9e2306b6bf","keyword":"苄叉丙酮","originalKeyword":"苄叉丙酮"},{"id":"39748ad2-d5db-4eb1-bde7-5977f31d1992","keyword":"Mannich碱","originalKeyword":"Mannich碱"},{"id":"f79f804b-d85a-4220-8eaa-0ed606e6a47b","keyword":"缓蚀性能","originalKeyword":"缓蚀性能"}],"language":"zh","publisherId":"clbh201206017","title":"一种苄叉丙酮Mannich碱缓蚀剂的合成及其缓蚀性能","volume":"45","year":"2012"},{"abstractinfo":"以乙酰丙酮氧钒为催化剂,过氧化氢为氧化剂, 研究了由α-蒎烯直接合成龙脑烯醛的反应. 考察了溶剂、温度、催化剂用量、反应时间等因素对催化性能的影响. 结果表明, 乙酰丙酮氧钒与H2O2反应得到的高价态V5+是优良的氧化还原-Lewis酸双功能催化剂,易使α-蒎烯经氧化、2,3-环氧蒎烷异构得到龙脑烯醛. 在n(H2O2):n(α-蒎烯):n(乙酰丙酮氧钒)=2.5:1:0.01、反应温度为20 ℃、丙酮为溶剂、反应2 h条件下,α-蒎烯转化率为50.2%,龙脑烯醛的选择性达58.7%,反应6 h后α-蒎烯转化率可达73.0%,主要产物龙脑烯醛和马鞭草烯酮的选择性分别为47.2%和13.2%.","authors":[{"authorName":"肖毅","id":"666cfe7b-a6c6-4b05-b9df-f465cb662cbd","originalAuthorName":"肖毅"},{"authorName":"黄红梅","id":"9574554a-971f-4b7f-a1c1-b880cb24df88","originalAuthorName":"黄红梅"},{"authorName":"毛丽秋","id":"2e9a0d3a-8e84-4bdc-82be-8f37c41c973b","originalAuthorName":"毛丽秋"},{"authorName":"周亮","id":"f456d0bd-8975-49e5-9c48-ad0384ea0d3e","originalAuthorName":"周亮"},{"authorName":"徐琼","id":"d90b8059-642a-4e91-a4f8-f970e1f018b3","originalAuthorName":"徐琼"},{"authorName":"王季惠","id":"1cd0324b-9780-4d25-9055-f378f80b0793","originalAuthorName":"王季惠"},{"authorName":"尹笃林","id":"34cc6cd6-ce19-4459-af73-c6a749c28529","originalAuthorName":"尹笃林"}],"doi":"10.3724/SP.J.1095.2010.00098","fpage":"1272","id":"f5d7b1f2-15c3-47f8-8546-3446f0085592","issue":"11","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"a3420aa5-6260-48b5-98f6-6b68bda51f34","keyword":"乙酰丙酮氧钒","originalKeyword":"乙酰丙酮氧钒"},{"id":"158695c9-7d48-4d71-82bd-b228c1b10b51","keyword":"α-蒎烯","originalKeyword":"α-蒎烯"},{"id":"95ff8fd5-fd4e-4aff-b713-d18f2357f6e2","keyword":"龙脑烯醛","originalKeyword":"龙脑烯醛"},{"id":"2ba3a66a-4c4f-4898-b607-2e13a8200ff8","keyword":"过氧化氢","originalKeyword":"过氧化氢"},{"id":"679096cd-7ea3-4500-8810-5a0f46f905b9","keyword":"催化氧化","originalKeyword":"催化氧化"}],"language":"zh","publisherId":"yyhx201011006","title":"乙酰丙酮氧钒催化氧化α-蒎烯一步转化成龙脑烯醛","volume":"27","year":"2010"},{"abstractinfo":"为了提高零价铁对氯代有机物还原脱氯的性能,采用还原沉淀法制备了纳米钯/铁双金属颗粒.利用X射线衍射(XRD)、X射线荧光光谱(XRF)、扫描电子显微镜(SEM)、透射电镜(TEM)、以及BET-N_2 比表面积法对纳米钯/铁双金属颗粒进行了表征.结果表明,制备的纳米钯/铁双金属颗粒中Fe主要以α-Fe~0 形式存在.纳米钯/铁双金属颗粒的直径约为30~50 nm,比表面积约51 m~2/g.纳米钯/铁双金属颗粒对一氯乙酸还原脱氯的脱氯率是还原铁粉和纳米铁粉对一氯乙酸还原脱氯的脱氯率的7.9倍和1.7倍.","authors":[{"authorName":"陈超","id":"fe0e096c-33b5-4920-aecc-fec92e4d5ab3","originalAuthorName":"陈超"},{"authorName":"王向宇","id":"9c52c008-313e-4078-a6b1-1beb29e02d85","originalAuthorName":"王向宇"},{"authorName":"常影","id":"ed1bd204-add2-40e0-ab81-eca257b5ec07","originalAuthorName":"常影"},{"authorName":"刘惠玲","id":"2498a59b-62a4-432a-8607-cfee18011bfe","originalAuthorName":"刘惠玲"}],"doi":"","fpage":"535","id":"ff44bad9-8a4d-4a82-a4d1-921566eea7d0","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"31f2efc2-2994-4910-8b30-bbc20b5f8b8c","keyword":"纳米钯/铁双金属颗粒","originalKeyword":"纳米钯/铁双金属颗粒"},{"id":"9400d6c4-d1fc-451c-9456-d39a31a3611c","keyword":"还原脱氯","originalKeyword":"还原脱氯"},{"id":"08b51173-cf98-4e62-a0a9-6ae3ed44cd10","keyword":"一氯乙酸","originalKeyword":"一氯乙酸"}],"language":"zh","publisherId":"clkxygy200904023","title":"纳米钯/铁双金属颗粒对一氯乙酸的脱氯","volume":"17","year":"2009"},{"abstractinfo":"建立了一种同时检测乙烯酮-丙酮法制乙酰丙酮反应液中乙酰丙酮和丙酮的高效液相色谱法(HPLC).采用Agilent Eclipse XDB-C18色谱柱,以四氢呋喃-水(15∶85,v/v)溶液为流动相(用0.1 mol/L 磷酸二氢钠缓冲盐调节pH为4.0~5.0),流速0.6 mL/min,紫外检测波长270 nm,采用外标法定量.在优化的条件下,乙酰丙酮和丙酮的线性范围分别为0.01~50.00 mg/L 和0.01~30.00 mg/L,相关系数均为 0.9999 以上.使用HPLC测定乙酰丙酮和丙酮的含量,其相对标准偏差均小于1.0% ,结果表明方法的重复性好;反应液中添加乙酰丙酮和丙酮的加标回收率均为99.00% ~101.50% .与应用紫外分光光度法测定乙酰丙酮的结果相比,平均相对误差为1.48% .所建立的方法为用丙酮生产乙酰丙酮等类似混合体系中乙酰丙酮的定量分析提供了依据,同时为酮类化合物的测定提供了准确、便捷的方法.","authors":[{"authorName":"曾红艳","id":"7f3a6d8a-3d57-4c1c-98db-baaf6d843d9e","originalAuthorName":"曾红艳"},{"authorName":"段正康","id":"918fb13b-0ac5-4e78-9db5-e0cc79e21cf1","originalAuthorName":"段正康"},{"authorName":"罗爱文","id":"d8d727b5-8a15-47c1-9f63-8abafa054750","originalAuthorName":"罗爱文"},{"authorName":"曾志丁","id":"9035ad74-28ba-4b70-bf12-7a5d1e1acb94","originalAuthorName":"曾志丁"}],"doi":"10.3724/SP.J.1123.2010.00955","fpage":"955","id":"a42f5eff-f011-41d2-a1b7-0b065ef5efad","issue":"10","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"795685d5-2b1d-4177-9012-7b7461043d11","keyword":"高效液相色谱法","originalKeyword":"高效液相色谱法"},{"id":"63aa4fa1-d4db-480a-8303-c6c407b3bb47","keyword":"乙酰丙酮","originalKeyword":"乙酰丙酮"},{"id":"3f086882-9858-4064-bb50-9acaecdec839","keyword":"丙酮","originalKeyword":"丙酮"},{"id":"ab452202-3c4e-4cd1-8c27-10cc55cef519","keyword":"乙酰丙酮反应液","originalKeyword":"乙酰丙酮反应液"}],"language":"zh","publisherId":"sp201010009","title":"高效液相色谱法同时测定乙酰丙酮反应液中的乙酰丙酮和丙酮","volume":"28","year":"2010"},{"abstractinfo":"以氯铱酸和乙酰丙酮为原料,通过水溶液沉淀法制备乙酰丙酮铱配合物,通过苯-己烷体系对乙酰丙酮铱配合物进行重结晶提纯.元素分析确定乙酰丙酮铱配合物结构中的碳氢含量.红外光谱结果表明,1549,1523 cm-1处出现的吸收峰为乙酰丙酮铱配合物中六元环结构中C-O键和C-C键的伸缩振动吸收蜂.核磁共振氢谱分析表明配合物中的氢的化学位移的位置和个数比与结构中的分子式相一致.根据对乙酰丙酮铱配合物的质谱结果进行分析,提出乙酰丙酮铱配合物可能的热分解机制.","authors":[{"authorName":"阎鑫","id":"7f666358-53b5-404f-a091-58c9d22f9643","originalAuthorName":"阎鑫"},{"authorName":"张秋禹","id":"8d0b55b1-d7ec-4909-9948-afba015fef5d","originalAuthorName":"张秋禹"}],"doi":"10.3969/j.issn.0258-7076.2010.04.021","fpage":"585","id":"0811253b-fdbd-4888-99a8-c7bbef35ce95","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"c9f70ccd-2798-48ee-a6e0-193aade53ea2","keyword":"铱","originalKeyword":"铱"},{"id":"0ed3b391-30a8-4380-8bd6-a982a4b6c7d3","keyword":"乙酰丙酮","originalKeyword":"乙酰丙酮"},{"id":"31837f71-8cd9-40ed-8277-00b733bb6bda","keyword":"合成","originalKeyword":"合成"},{"id":"14d39c7d-790d-4522-a906-0d67b5992d05","keyword":"热分解机制","originalKeyword":"热分解机制"}],"language":"zh","publisherId":"xyjs201004021","title":"乙酰丙酮铱配合物的合成及热分解机制研究","volume":"34","year":"2010"},{"abstractinfo":"建立紫外分光光度法定量测定一氯三(三苯基膦)合铑(I)的方法.测定波长为350 nm,溶剂为三氯甲烷,线性范围为0.03~0.17 mg/mL, γ= 0.9990,平均回收率为99.1%,RSD=2.0%(n=6).该方法具有简单、灵敏、准确的特点,适合于一氯三(三苯基膦)合铑(I)的快速测定.","authors":[{"authorName":"郑萍","id":"660beffe-6720-48a7-9183-ea45a19fd417","originalAuthorName":"郑萍"},{"authorName":"潘再富","id":"1db47278-a1d1-4260-ae58-c89604ef68a1","originalAuthorName":"潘再富"},{"authorName":"姜婧","id":"a4d25eef-de35-4505-b6be-d10cbcb10e52","originalAuthorName":"姜婧"},{"authorName":"刘桂华","id":"890e252d-2860-466c-92d4-8e5cfb7f7456","originalAuthorName":"刘桂华"},{"authorName":"谢笑天","id":"01c5da0d-51d2-4896-9f03-bfcb0240c9cb","originalAuthorName":"谢笑天"},{"authorName":"刘伟平","id":"67f4973a-3945-42c3-8503-a07f85ad2955","originalAuthorName":"刘伟平"}],"doi":"10.3969/j.issn.1004-0676.2010.03.009","fpage":"43","id":"e3280ba1-2471-48ad-b290-e5c10835d665","issue":"3","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"d139b7c3-23fa-49c1-b7d2-d8600cbce9d9","keyword":"分析化学","originalKeyword":"分析化学"},{"id":"1fa922d3-1379-4997-9c2b-6f4138f0549f","keyword":"一氯三(三苯基膦)合铑(I)","originalKeyword":"一氯三(三苯基膦)合铑(I)"},{"id":"3c1e33c7-c217-45f6-80d3-1f78d97473b1","keyword":"紫外分光光度法","originalKeyword":"紫外分光光度法"},{"id":"08ec7c1b-89b2-4692-ac41-bf19c3a10821","keyword":"含量测定","originalKeyword":"含量测定"}],"language":"zh","publisherId":"gjs201003009","title":"紫外分光光度法测定一氯三(三苯基膦)合铑(I)的含量","volume":"31","year":"2010"}],"totalpage":7658,"totalrecord":76572}