{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了持续研究油套管钢的腐蚀磨损行为,揭示其腐蚀磨损机理,采用失重法和电化学法测试了油套管钢P110S在不同浓度氯化钠溶液中的腐蚀磨损行为.结果表明:对以索氏体和贝氏体为基本组织的油套管钢P110S而言,在不同浓度的氯化钠溶液中,腐蚀与磨损呈正交互作用;在所测试的3种浓度(0.01,0.10,1.00mol/L)中,P110S在0.10 mol/L氯化钠溶液中的失重最大;电化学研究显示,腐蚀磨损前随着氯化钠溶液浓度的增加,P110S的自腐蚀电位逐渐降低,在3种浓度氯化钠溶液中腐蚀磨损一定时间后,P110S的自腐蚀电位基本相同;P110S在0.01 mol/L和1.00 mol/L氯化钠溶液中的腐蚀磨损形貌呈现零散的鹅卵形冲击坑,坑底部存在着严重的塑性变形和局部断裂,而在0.10 mol/L的氯化钠溶液中,小的冲击坑遍布试样表面,坑密且浅.","authors":[{"authorName":"张雅妮","id":"e8a0c650-b2c0-46f8-867b-2434e7eea141","originalAuthorName":"张雅妮"},{"authorName":"罗金恒","id":"821b10b6-7f85-4389-8bad-0b0393a8b142","originalAuthorName":"罗金恒"}],"doi":"","fpage":"23","id":"a56e6a9d-6fa0-477a-ba31-a09e89aeba2a","issue":"12","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"682f20ba-18f6-43ef-a14a-5e682e1afc9a","keyword":"P110S","originalKeyword":"P110S"},{"id":"000f5ccc-3cbe-42d7-8fdd-c0e559bb7b57","keyword":"腐蚀磨损","originalKeyword":"腐蚀磨损"},{"id":"878aa51c-0846-4a04-8fcf-9dec88bf7996","keyword":"氯化钠溶液","originalKeyword":"氯化钠溶液"},{"id":"c1b43787-d410-4b48-99e7-e45fdcb37e45","keyword":"失重法","originalKeyword":"失重法"},{"id":"e700933d-d8e1-427b-9a1a-da6a8b3b6f6c","keyword":"电化学法","originalKeyword":"电化学法"}],"language":"zh","publisherId":"clbh201512007","title":"油套管钢P110S的腐蚀磨损交互作用","volume":"48","year":"2015"},{"abstractinfo":"采用失重法和电化学方法研究了P110S油套管钢在不同pH 氯化钠溶液中的腐蚀磨损行为,分析了试样表面的磨损产物。结果表明:试验钢在pH 为3的氯化钠溶液中的腐蚀磨损速率最大,而在 pH 为7氯化钠溶液中的最小,在不同 pH 氯化钠溶液中,试验钢的腐蚀与磨损呈正交互作用;腐蚀磨损后试样的自腐蚀电位在 pH 为11的氯化钠溶液中最低,在 pH 为3,7的氯化钠溶液中相差不大,溶液pH 对腐蚀磨损前试样的自腐蚀电位影响不大;随着氯化钠溶液 pH 的增加,试样表面磨损变形程度增大,腐蚀产物中氧、铁原子比减小。","authors":[{"authorName":"张雅妮","id":"d0f32dcc-f0f0-4b75-8c6a-18a107efebc4","originalAuthorName":"张雅妮"},{"authorName":"罗金恒","id":"341a6002-f58b-47fa-ac1b-d1d615da92f0","originalAuthorName":"罗金恒"},{"authorName":"冯贝贝","id":"83d1bdb3-76e9-4c80-8444-64e5efffaa03","originalAuthorName":"冯贝贝"}],"doi":"10.11973/jxgccl201608019","fpage":"81","id":"e730869e-1b53-44af-8756-2f66aa644689","issue":"8","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"6dc54aff-1ed8-45c1-ba76-d588a9c5d389","keyword":"P110S油套管钢","originalKeyword":"P110S油套管钢"},{"id":"bbc1e566-9a93-4c6a-b93e-49b95c844445","keyword":"腐蚀磨损","originalKeyword":"腐蚀磨损"},{"id":"b8ada9c7-79e2-47ad-ac3a-56b3b2c78aac","keyword":"氯化钠溶液","originalKeyword":"氯化钠溶液"},{"id":"49e198ab-63a5-4eed-a457-73f120d9255b","keyword":"pH","originalKeyword":"pH"}],"language":"zh","publisherId":"jxgccl201608019","title":"不同pH氯化钠溶液对P 110S油套管钢腐蚀磨损交互作用的影响","volume":"40","year":"2016"},{"abstractinfo":"110 ksi钢级C110,P110套管在酸性油气田环境服役过程中受到应力和腐蚀的双重作用,其腐蚀速率与静态的结果不同.如何利用室内试验结果为现场选材提供依据,目前研究尚不充分.采用挂片法、高温高压恒载荷应力腐蚀试验装置和高温高压三点弯曲应力腐蚀试验装置测试了60℃,10 MPa,10%(体积分数,下同)H2S,20%CO2酸性环境中,P110,C110套管钢分别在自由状态、拉应力以及剪应力状态下的腐蚀速率.结果表明:在酸性环境中,套管钢承受应力作用时会发生应变老化,腐蚀速率显著增大;腐蚀作用在缺口敏感和应力集中部位尤为明显,这些特殊结构部位将形成微裂纹并持续扩展,造成套管钢力学性能和使用寿命降低.本方法适合受应力和腐蚀双重作用下管材腐蚀速率的测试.","authors":[{"authorName":"侯铎","id":"347a8fc0-059a-4075-9ce3-71ac651c9956","originalAuthorName":"侯铎"},{"authorName":"曾德智","id":"bdf28e67-6e42-4ebf-a9ca-54817027a905","originalAuthorName":"曾德智"},{"authorName":"陈玉祥","id":"bcdfede6-104f-473f-8623-f9534519c7c5","originalAuthorName":"陈玉祥"},{"authorName":"施太和","id":"c890ec44-0a06-4c36-9cdf-91f928d1b96e","originalAuthorName":"施太和"},{"authorName":"张智","id":"55f6109d-bcab-464a-b12d-1719e42750b2","originalAuthorName":"张智"}],"doi":"","fpage":"65","id":"2de66052-0e35-4fe5-be9b-0c5b95a40737","issue":"10","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"fdab8815-0560-4859-97e2-64911577113e","keyword":"应力腐蚀","originalKeyword":"应力腐蚀"},{"id":"b7440400-be16-4e3e-9253-db669b80c3b1","keyword":"110 ksi套管钢","originalKeyword":"110 ksi套管钢"},{"id":"4a952c01-08d8-474e-aa88-6c2a42f91722","keyword":"酸性环境","originalKeyword":"酸性环境"},{"id":"97cedc04-973d-4590-82f0-9e085f092af3","keyword":"H2S","originalKeyword":"H2S"},{"id":"0889ef45-bf88-4177-a806-b79a8a4f8a34","keyword":"CO2","originalKeyword":"CO2"},{"id":"a7a2a87c-3a3e-4edf-8a90-99af1b271780","keyword":"高温高压","originalKeyword":"高温高压"},{"id":"30eca4e8-30dd-4fd1-8805-8b3280ce5cc1","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"}],"language":"zh","publisherId":"clbh201410020","title":"H2S,CO2酸性环境中110ksi钢P110,C110套管的应力腐蚀速率","volume":"47","year":"2014"},{"abstractinfo":"采用高温高压实验设备辅以失重法, 研究了CO2/H2S腐蚀环境中P110钢的腐蚀性能, 用SEM、EDS和XRD等分析了腐蚀产物. 分别用电化学充氢及NACE TM0177 A法对P110钢进行耐氢损伤试验. 结果表明, 虽然P110钢在试验环境中的均匀腐蚀速率很小, 未发生点蚀, 但随着充氢量的增加, 强度、伸长率及断面收缩率均降低. 充氢量达到一定程度时, 材料由韧性断裂转变为脆性断裂. P110钢未通过NACE TM0177标准A法对应力腐蚀开裂性能的检测. 因此, 当井下环境中含H2S时, P110钢的使用安全性有待进一步提高.","authors":[{"authorName":"韩燕","id":"13481f39-7ae4-4f99-a28b-daa4254e0b9d","originalAuthorName":"韩燕"},{"authorName":"赵雪会","id":"bc21111e-b648-4edf-9ca4-4bd1b6a3db4b","originalAuthorName":"赵雪会"},{"authorName":"白真权","id":"d0a68fbe-eb83-47f1-a0cb-8ed1fe9de1b5","originalAuthorName":"白真权"},{"authorName":"尹成先","id":"18083948-37cf-4575-aadf-b3e121698260","originalAuthorName":"尹成先"}],"categoryName":"|","doi":"","fpage":"32","id":"9bc27f93-6273-4aa7-b64c-5d339de64d4f","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"5204fd27-b7da-4e30-b54d-44b35adca847","keyword":"腐蚀评价","originalKeyword":"腐蚀评价"},{"id":"b0fa76b2-7d77-45c3-8fce-990aa60f757e","keyword":"hydrogen damage","originalKeyword":"hydrogen damage"},{"id":"dd258483-3e9c-48cc-899d-5cf8b3a04f0d","keyword":"stress corrosion","originalKeyword":"stress corrosion"},{"id":"4e8f3aeb-6833-44cb-9e2f-087f536fb5e2","keyword":"CO2/H2S corrosion","originalKeyword":"CO2/H2S corrosion"},{"id":"1322b9d7-1df7-4cf7-8ba6-bef905c46879","keyword":"corrosion rate","originalKeyword":"corrosion rate"}],"language":"zh","publisherId":"1002-6495_2012_1_7","title":"P110钢在CO2/H2S环境中的适用性研究","volume":"24","year":"2012"},{"abstractinfo":"采用高温高压实验设备辅以失重法,研究了CO2/H2S腐蚀环境中P110钢的腐蚀性能,用SEM、EDS和XRD等分析了腐蚀产物.分别用电化学充氢及NACE TM0177A法对P110钢进行耐氢损伤试验.结果表明,虽然P110钢在试验环境中的均匀腐蚀速率很小,未发生点蚀,但随着充氢量的增加,强度、伸长率及断面收缩率均降低.充氢量达到一定程度时,材料由韧性断裂转变为脆性断裂.P110钢未通过NACETM0177标准A法对应力腐蚀开裂性能的检测.因此,当井下环境中含H2S时,P110钢的使用安全性有待进一步提高.","authors":[{"authorName":"韩燕","id":"915bcd42-7ad2-4a03-93d8-49dd22f85c05","originalAuthorName":"韩燕"},{"authorName":"赵雪会","id":"f486cbde-42fb-4268-be5a-de142dfd28a9","originalAuthorName":"赵雪会"},{"authorName":"白真权","id":"bd81cb94-3550-41d1-a5f3-065e02a55369","originalAuthorName":"白真权"},{"authorName":"尹成先","id":"5d00a80c-b20c-4c5b-9b83-a4df8e21e10b","originalAuthorName":"尹成先"}],"doi":"","fpage":"32","id":"330fd2ef-2cf6-4c60-a86e-d75d9fa31e09","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"5355fa8b-09b3-4246-ac51-dcf1eca33a0a","keyword":"腐蚀评价","originalKeyword":"腐蚀评价"},{"id":"74797c05-355d-4ac3-bf13-a952e3302bfc","keyword":"氢损伤","originalKeyword":"氢损伤"},{"id":"5b99aeca-3a60-41e6-8399-bbace7df8a2d","keyword":"应力腐蚀","originalKeyword":"应力腐蚀"},{"id":"cc89264e-b7b0-42f4-879a-4aff0ada6ea6","keyword":"CO2/H2S腐蚀","originalKeyword":"CO2/H2S腐蚀"},{"id":"3ee95cf6-631b-4740-8a15-22de3e973141","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"}],"language":"zh","publisherId":"fskxyfhjs201201007","title":"P110钢在CO2/H2S环境中的适用性研究","volume":"24","year":"2012"},{"abstractinfo":"用恒载荷拉伸法,结合腐蚀电化学测试技术和断口扫描电镜(SEM)分析技术,研究了P110钢在H2S/CO2NACE标准溶液中的硫化物应力腐蚀 (SSCC)行为。结果表明,随着溶液中的H2S含量增高,P110钢的自腐蚀电位(E corr})急剧下降,至极小值后缓慢升高,约5 h后达到稳定值直至断裂,试样呈解理状脆性断口;随溶液中通入CO2量的增大,P110 钢的自腐蚀电位(Ecorr)稍有增高,自腐蚀电流(Icorr})减小,试样断裂时间延长,断口由脆性解理向韧窝状韧性转化。这种现象的产生与H2S/CO2在钢表面的竞争吸附及P110钢在应力腐蚀环境中表面膜的拉伸破裂与再生有关。","authors":[{"authorName":"崔世华","id":"4c83ffaa-cfb6-4bb7-9d70-bd435a60857d","originalAuthorName":"崔世华"},{"authorName":"李春福","id":"70616ae0-955b-4041-b031-33e9679d30a6","originalAuthorName":"李春福"},{"authorName":"王朋飞","id":"ec6c241c-be02-433e-b43c-adce8f13b377","originalAuthorName":"王朋飞"},{"authorName":"邓洪达","id":"e7301cd1-4060-464a-a8fc-27e5820a1f4f","originalAuthorName":"邓洪达"}],"categoryName":"|","doi":"","fpage":"213","id":"c9b87e67-ff47-4337-8dbd-eb9ce2d6295f","issue":"3","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"b9cc90ec-9271-4c96-ad45-274f6e820a85","keyword":"P110","originalKeyword":"P110"},{"id":"731514b2-4f6a-4d0a-b3ef-62f4dcdf8b36","keyword":"H2S/CO2","originalKeyword":"H2S/CO2"},{"id":"71170bea-f01e-410d-8230-08bf7309b453","keyword":"sulfide stress corrosion cracking","originalKeyword":"sulfide stress corrosion cracking"}],"language":"zh","publisherId":"1005-4537_2010_3_10","title":"高含H2S/CO2环境中P110钢应力腐蚀","volume":"30","year":"2010"},{"abstractinfo":"利用高温高压哈氏合金反应釜对P110SS油套管钢在不同H2S和CO2环境下的腐蚀行为进行了实验.研究了H2S和CO2分压对P110SS油套管钢腐蚀规律的影响,利用SEM、EDS、XRD等方法分析了腐蚀试样的微观形貌与结构特征,发现P110SS在较低温度条件下,H2S浓度非常低时,腐蚀特征与单纯CO2腐蚀规律相似,腐蚀速率比较高.在相同的H2S分压条件下,随CO2浓度增加,腐蚀速率依次增加.通过应力腐蚀开裂试验表明,P110SS在高温205℃条件下应力腐蚀开裂敏感较小.","authors":[{"authorName":"陈长风","id":"106c63b5-b999-4c25-89e2-2db0b2dab593","originalAuthorName":"陈长风"},{"authorName":"郑树启","id":"eb2e5f00-8e6d-4e29-9c5d-2891d8cd532a","originalAuthorName":"郑树启"},{"authorName":"姜瑞景","id":"4883b425-4314-421a-a97e-c74a91f8c161","originalAuthorName":"姜瑞景"},{"authorName":"陈立强","id":"d78de59e-1854-4ef7-b5ef-67a470d18474","originalAuthorName":"陈立强"}],"doi":"","fpage":"162","id":"21d355bc-0f77-4e76-958a-25a7d8d2f2d9","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"532b15d0-d2f5-4da6-95f6-3915c13147d8","keyword":"H2S和CO2环境","originalKeyword":"H2S和CO2环境"},{"id":"8e5f0ee1-263d-433d-9fdf-1a71b709d88d","keyword":"P110SS钢","originalKeyword":"P110SS钢"},{"id":"d37dc1c7-8979-4fd6-81cd-8bca7fa0eaae","keyword":"腐蚀规律","originalKeyword":"腐蚀规律"},{"id":"415989f0-d722-4603-bfa9-e8722fba2c9e","keyword":"应力腐蚀开裂","originalKeyword":"应力腐蚀开裂"}],"language":"zh","publisherId":"jsrclxb200905037","title":"P110SS钢在H2S和CO2环境中的腐蚀特征","volume":"30","year":"2009"},{"abstractinfo":"利用高温高压釜设备模拟油气田环境并辅以失重法,研究了高Cl-条件下H2S分压对P110钢腐蚀速率的影响,结果表明:P110钢的腐蚀速率随着H2S分压的增大呈先增大后减小的趋势,且在0.06 MPa时取得最大值;采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线能谱仪(EDS)技术对腐蚀产物膜进行分析知:H2S分压通过影响腐蚀产物膜厚度、微观吸附形貌和表面膜成分等,进而影响了P110钢的腐蚀速率.","authors":[{"authorName":"朱世东","id":"3b8a4750-a1c1-422b-9f88-3643efef56c4","originalAuthorName":"朱世东"},{"authorName":"白真权","id":"8945291b-579a-4ff2-9847-5aad287eb607","originalAuthorName":"白真权"},{"authorName":"林冠发","id":"3813af3d-518e-4843-8c13-10bb0559e63a","originalAuthorName":"林冠发"},{"authorName":"尹成先","id":"4ca34d21-fc4f-4d4a-87f9-caab286a149f","originalAuthorName":"尹成先"},{"authorName":"刘会","id":"627b718b-823d-4927-8db6-d29a8faf9cae","originalAuthorName":"刘会"}],"doi":"","fpage":"293","id":"4cec73a3-9a06-4c32-8ea1-26bb21b5886e","issue":"5","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"a202c1d0-b361-45d2-8c2e-f9f1fc3c5fb4","keyword":"P110钢","originalKeyword":"P110钢"},{"id":"139b8fe0-19b0-49af-b0fe-43fe67e98e9f","keyword":"H2S分压","originalKeyword":"H2S分压"},{"id":"f2502896-d022-4b8f-b5f3-00b01a54f2af","keyword":"Cl-","originalKeyword":"Cl-"},{"id":"d466c83c-4184-4b3b-a31c-d4b5cb32fce5","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"}],"language":"zh","publisherId":"fsyfh200905002","title":"高Cl-条件下H2S分压对P110钢腐蚀速率的影响","volume":"30","year":"2009"},{"abstractinfo":"采用高温高压釜模拟高含H2S/CO2的腐蚀环境,研究了Cl-对抗硫套管钢P110SS腐蚀速率、硫化物应力开裂和氢致开裂的影响.结果表明,抗硫套管钢P110SS的腐蚀速率随介质中Cl-浓度升高先增加后减小,当Cl-浓度达到50 g/L时,P110SS腐蚀速率达到最大值;抗硫套管钢P110SS没有出现硫化物应力开裂和氢致开裂的裂纹,其硫化物应力开裂和氢致开裂敏感性较低,原因是均匀细小的回火索氏体组织,有益元素铬、钼、钛、钕、钒的加入以及低含量的有害元素硫和磷.","authors":[{"authorName":"伍丹丹","id":"55bacd41-ccb2-4d26-b7b1-03c9bab11d07","originalAuthorName":"伍丹丹"},{"authorName":"肖琪","id":"ea8b9da0-48cb-4af9-8b25-371880186617","originalAuthorName":"肖琪"},{"authorName":"王树涛","id":"9f18cb58-6f77-48a2-8a72-e937839e1750","originalAuthorName":"王树涛"},{"authorName":"黄雪松","id":"31d17b27-4b70-4c65-8ecf-56d1ed35d767","originalAuthorName":"黄雪松"},{"authorName":"关建庆","id":"adb75af9-82c7-4d0a-b7ab-98ba84cad104","originalAuthorName":"关建庆"},{"authorName":"张庆生","id":"d3e39ca7-6a8a-4ed7-8b1a-a1fc60036ff4","originalAuthorName":"张庆生"}],"doi":"","fpage":"112","id":"a6dbf7e6-f1cb-4901-b37c-157ddae61a1f","issue":"2","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"761b3df1-7055-40ce-b698-be390e3bce1d","keyword":"抗硫套管钢P110SS","originalKeyword":"抗硫套管钢P110SS"},{"id":"52c3fc7d-1528-4465-b09d-6ad1c725226a","keyword":"高含H2S/CO2","originalKeyword":"高含H2S/CO2"},{"id":"4701820f-13e8-4f8b-b6fa-9476a97af8a1","keyword":"氯离子","originalKeyword":"氯离子"},{"id":"14df826e-9e26-4988-8ca8-3b7010a13fde","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"b7a08899-affa-4e4b-b54a-36d3618bc1ff","keyword":"硫化物应力开裂","originalKeyword":"硫化物应力开裂"},{"id":"222972de-fa4d-4a4b-8ad4-bf333f255d60","keyword":"氢致开裂","originalKeyword":"氢致开裂"}],"language":"zh","publisherId":"fsyfh201402002","title":"抗硫套管钢P110SS在高含H2S/CO2、Cl-共存条件下的腐蚀行为","volume":"35","year":"2014"},{"abstractinfo":"利用腐蚀失重试验,电化学试验和扫描电子显微镜等方法研究了不同温度下P110钢在含饱和H2S/CO2气体的5%NaCl溶液中的腐蚀行为.研究表明:随着温度的升高,P110钢的腐蚀速率呈现出了先增大后减小的规律;在含饱和H2S/CO2气体的5%NaCl溶液中,由于温度升高促进了点蚀的发生,在较高温度时形成全面腐蚀,但温度的升高导致H2S、CO2气体的溶解度降低,抑制了点蚀的发生,形成厚而致密的腐蚀产物膜,使腐蚀速率随温度升高而降低.","authors":[{"authorName":"刘飞","id":"51359afe-17a4-4f44-926b-6506fbb1e9bb","originalAuthorName":"刘飞"},{"authorName":"黄金营","id":"6648b381-b69f-4309-b5d9-71f58a0dd01c","originalAuthorName":"黄金营"},{"authorName":"夏成宇","id":"0f3a22aa-ad9a-4398-958e-cd92d4c9df8d","originalAuthorName":"夏成宇"},{"authorName":"周仕明","id":"dc29162a-b8f0-4cc6-adcd-e0700802a128","originalAuthorName":"周仕明"},{"authorName":"邓天安","id":"bb93d8c9-b338-4756-ad57-cc2f1fd6f98c","originalAuthorName":"邓天安"}],"doi":"10.11973/fsyfh-201606010","fpage":"481","id":"eb99881f-8cf4-44b8-9172-1d4736664d01","issue":"6","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"ecf0c243-511f-4597-97a0-a32a8c27bebe","keyword":"硫化氢","originalKeyword":"硫化氢"},{"id":"c5578f31-871c-42e8-81f5-c01dbfe86ab2","keyword":"二氧化碳","originalKeyword":"二氧化碳"},{"id":"4fdd1130-a636-4921-9c4e-ebc5a9e39358","keyword":"温度","originalKeyword":"温度"},{"id":"03189f78-a9db-49b2-8417-c4e9f12b781b","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"36596d7b-d6e4-4037-b6e5-9f413e007a02","keyword":"腐蚀产物膜","originalKeyword":"腐蚀产物膜"}],"language":"zh","publisherId":"fsyfh201606010","title":"P110钢在不同温度含饱和H2S/CO2腐蚀溶液中的腐蚀行为","volume":"37","year":"2016"}],"totalpage":2402,"totalrecord":24011}