邓书端
,
李向红
,
付惠
,
孙友利
腐蚀与防护
滇润楠(Machilus yunnanensis)叶的提取物(简称为MYLE)可作为“绿色”缓蚀剂。用失重法、动电位极化曲线和电化学阻抗谱(EIS)研究了MYLE在0.5 mol/L H2SO4中对冷轧钢的缓蚀作用。结果表明,MYLE对冷轧钢具有良好的缓蚀作用,且在钢表面的吸附符合Langmuir吸附校正模型;MYLE为混合抑制型缓蚀剂;EIS谱在高频区呈容抗弧,在低频区出现感抗弧,电荷转移电阻随缓蚀剂浓度的增加而增大。
关键词:
钢
,
硫酸
,
滇润楠
,
缓蚀
,
吸附
,
提取物
余婕
,
乔楠楠
,
何文妍
,
王珊珊
,
王静
,
黄晓丽
,
马红竹
硅酸盐通报
采用PVA对高岭土进行改性,制成了一种新型粒子电极-PVA-kaolin,并采用FT-IR、XRD对其进行了表征.实验将其填充在阴阳两极之间,在三维电极体系中对十二烷基苯磺酸钠(SDBS)进行了电催化降解.结果表明:PVA浓度0.1g/L,PVA-kaolin投加量13 g,pH值为10,SDBS浓度300 mg/L,电流密度100 mA/cm2,Na2SO4投加量为3 g时降解20 min,SDBS去除率可达80.85%.动力学分析表明,相比于SDBS初始浓度,粒子电极投加量对降解效果的影响较大.另外,实验所制备粒子电极具有较好的重复使用性.
关键词:
粒子电极
,
电催化
,
PVA
,
反应动力学
黄晓丽
,
马红竹
,
胡萌晓
,
余婕
,
王珊珊
,
乔楠楠
硅酸盐通报
采用盐酸改性,制备出盐酸改性粉煤灰(HCl-FA),并将其应用于吸附法处理甲基橙(MO)染料废水中.结果表明,(1)通过单因素试验得出最佳的实验条件为:MO染料废水初始浓度为200 mg/L、溶液初始pH值不调节、HCl-FA用量为4g(即10 g/L)、反应温度为室温、吸附30 min.在此条件下,甲基橙的脱色率可以达到90.49%.(2)通过正交法优化实验得出最佳实验条件:MO染料废水初始浓度为200 mg/L、溶液初始pH值为5、HCl-FA用量为4 g(即10 g/L)、反应温度为15℃、吸附30 min.在最佳的实验条件下,MO脱色率可以达到91.09%.
关键词:
正交法
,
粉煤灰
,
甲基橙
,
吸附
胡萌晓
,
乔楠楠
,
常嘉丽
,
张朵朵
,
马红竹
膜科学与技术
doi:10.16159/j.cnki.issn1007-8924.2015.02.017
在较低的转速下(720 r/min),将磁力搅拌和超声方法结合,制备煤油-Span80-NaOH乳化液膜,在较温和条件下制备了稳定性较高的乳化液膜.将制备的乳化液膜应用于1-萘酚废水溶液的处理.系统考察了液膜制备过程的影响因素,如NaOH浓度、超声时间、油内比等;废水处理的操作条件:外水相pH、接触时间和乳水体积比等因素对1-萘酚的去除效果.结果表明,NaOH浓度为2%、超声时间为5 min、油内比为1∶2、无需调节pH、接触时间为15min、乳水比为1∶5时,1-萘酚去除率可高达94%.
关键词:
1-萘酚
,
乳化液膜法
,
超声
乔楠楠
,
胡萌晓
,
马红竹
硅酸盐通报
本研究采用电-Fenton/三维电极联合技术降解苯酚废水,利用铁改性膨润土(Fe-Bent)作为粒子电极,考察了溶液初始pH、苯酚初始浓度、电流密度、电极间距及电解质浓度等电化学体系操作条件对苯酚降解效果的影响;同时监测了反应过程中铁离子和羟基自由基浓度的变化情况.结果表明,溶液初始pH =3,电流密度125 mA/cm2,苯酚初始浓度100 mg/L,电极间距1.O cm,电解质浓度0.05 mol/L,电解时间180m in时,苯酚的转化率可达到67.53%,COD去除率达57.11%.此时,溶液中铁离子的浓度为6.93 mg/L,沥出的铁离子较少,说明粒子电极较稳定.
关键词:
电-Fenton
,
三维电极
,
苯酚
,
Fe-Bent
孙晓丹
,
李海梅
,
刘霞
,
徐萌
环境化学
doi:10.7524/j.issn.0254-6108.2017.02.2016092602
随着城市化和工业化的发展,空气环境问题日益突出,大气颗粒物污染受到人们越来越多的关注,为了研究城市道路中不同绿地结构对大气不同粒径颗粒物的消减作用,本文选择青岛市城阳区主干道——长城路的4种不同绿地结构(“乔-灌-草”、“乔-草”、“乔-灌”、“灌-草”),测定其对不同粒径颗粒物(PM10、PM2.5、PM1)的消减率.结果表明:(1)不同粒径颗粒物的浓度日变化曲线呈现出“早晚高,中午低”的变化趋势,其中8:00-10:00的颗粒物浓度最高;颗粒物浓度日变化与空气湿度变化相一致,与温度变化相反;(2)4种绿地结构对PM10的消减率表现为“乔-灌-草”>“乔-灌”>“灌-草”>“乔-草”,对PM:5和PM1的消减率表现为“乔-灌-草”>“乔-灌”>“乔-草”>“灌-草”;且各绿地结构对PM2.5的消减能力最强,其次为PM1和PM1o;(3)同一种绿地结构,植物种类越丰富,其消减大气颗粒物的能力越强.
关键词:
绿地结构
,
不同粒径
,
颗粒物
,
消减能力