{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用Al(NO3)3·9H2O 作为Al2O3 源,间苯二酚-糠醛为碳源,环氧丙烷为凝胶促进剂,通过溶胶-凝胶方法一釜合成了湿凝胶,并经超临界正己烷干燥和碳化制备了Al2O3-C 杂化气凝胶. 研究了Al2O3含量、间苯二酚-糠醛浓度和环氧丙烷/铝摩尔比对所合成的杂化气凝胶孔隙性质的影响.结果表明,此杂化气凝胶均为中孔结构,其平均孔径小于20 nm,Al2O3属于γ-型结构但X射线衍射峰很宽.杂化气凝胶在Al2O3含量小于5.31 wt%和间苯二酚-糠醛浓度为10 g/mL时可形成整体块状.在其他条件相同的情况下,中孔孔容、BET比表面、外表面积和中孔孔径随环氧丙烷/铝摩尔比增加而增大.制备过程中凝胶的体积收缩率和炭化收率随Al2O3含量增加而增大,但密度随Al2O3含量增加在4.93 wt%处达到最大.中孔孔容和孔径以及外表面积在环氧丙烷/铝摩尔比为5和6时随间苯二酚-糠醛浓度增加而减小,而在环氧丙烷/铝摩尔比为4时随间苯二酚-糠醛浓度增加而增大.","authors":[{"authorName":"张睿","id":"56745765-1279-4d39-b8c3-973fd0e3a84f","originalAuthorName":"张睿"},{"authorName":"蒋宁","id":"7a474e8a-d716-4437-9887-9f5387e796f8","originalAuthorName":"蒋宁"},{"authorName":"段晓佳","id":"f232388b-07d1-4978-a7a5-232cf7d5f347","originalAuthorName":"段晓佳"},{"authorName":"金双玲","id":"c4d24843-e0bc-4be8-968e-51bc79025e59","originalAuthorName":"金双玲"},{"authorName":"金鸣林","id":"02712847-8680-4a1a-b952-b10365d2ce53","originalAuthorName":"金鸣林"}],"doi":"10.1016/S1872-5805(17)60122-7","fpage":"258","id":"b76ac970-7250-445e-a7ac-448ba64ac08a","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"048a4d3f-233f-4cc7-ab8b-c658916fb666","keyword":"氧化铝-碳杂化气凝胶","originalKeyword":"氧化铝-碳杂化气凝胶"},{"id":"a251c333-f7a2-45ff-b397-d9a6b05e6a36","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"97d8b261-135e-4033-98e0-bc52523f9b2b","keyword":"超临界干燥","originalKeyword":"超临界干燥"}],"language":"zh","publisherId":"xxtcl201703010","title":"溶胶-凝胶一釜法Al2O3-C杂化气凝胶的合成和表征","volume":"32","year":"2017"},{"abstractinfo":"在众多气凝胶中,氧化铝气凝胶不仅热导率低,而且高温稳定性好(长期使用温度高达950℃),在高温催化、高温隔热等领域是一种理想的材料。但在工作温度超过1000℃时,氧化铝气凝胶的使用受到限制。简要介绍了氧化铝气凝胶的制备工艺,分析了氧化铝气凝胶的失效理论,并对其耐高温性能的改善进行了探讨。","authors":[{"authorName":"温培刚","id":"69d36daf-1c4f-4e5a-b30b-d569cb50c3fd","originalAuthorName":"温培刚"},{"authorName":"巢雄宇","id":"e2aa3ed3-fcca-4e7e-8059-5666d8dbfee2","originalAuthorName":"巢雄宇"},{"authorName":"袁武华","id":"d5cf1b4b-d421-4775-88f2-3f2716a2a838","originalAuthorName":"袁武华"},{"authorName":"顾立","id":"1d921bd2-9039-4263-a509-65947a918213","originalAuthorName":"顾立"}],"doi":"10.11896/j.issn.1005-023X.2016.015.008","fpage":"51","id":"729758f5-1076-48cb-a68a-39315e768577","issue":"15","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"41723885-64e2-47bc-823e-d4ebe298cf7d","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"1ea8857e-ab6b-431d-b4c8-6436e405853a","keyword":"气凝胶","originalKeyword":"气凝胶"},{"id":"22217294-c802-44b9-8f33-c12c87a1abe0","keyword":"烧结","originalKeyword":"烧结"},{"id":"3bc364ad-bd20-41cc-a0cb-b7fc4cd00d61","keyword":"耐高温","originalKeyword":"耐高温"}],"language":"zh","publisherId":"cldb201615009","title":"耐高温氧化铝气凝胶研究进展","volume":"30","year":"2016"},{"abstractinfo":"由铝的纳米氧化物溶胶制得纳米氧化铝杂化的聚酰亚胺(PI)薄膜.对PI薄膜的耐电晕性进行了测试,结果表明氧化铝质量百分数为23%的PI薄膜在棒板电极系统、气隙间距0.1 mm、50 Hz、90 MV/m条件下耐电晕时间达120h以上.比纯PI薄膜提高30倍以上;使用介电谱仪测试其介电常数和介质损耗;采用FTIR、SEM分别表征了杂化PI薄膜与纯PI薄膜的化学结构和表面形貌.","authors":[{"authorName":"范勇","id":"3c333ed4-bca0-4139-96f5-493298314d5c","originalAuthorName":"范勇"},{"authorName":"安军伟","id":"f0c22418-206d-4c64-b0a0-eab0070ba7dc","originalAuthorName":"安军伟"},{"authorName":"周宏","id":"49150109-5aaa-448c-b914-94188a870256","originalAuthorName":"周宏"},{"authorName":"刘伟","id":"300b04a6-3375-49c0-b001-7898e86e560f","originalAuthorName":"刘伟"}],"doi":"10.3969/j.issn.1009-9239.2007.02.001","fpage":"1","id":"d1b9a5fd-0fe0-4c2a-a809-fdcedcdcc952","issue":"2","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"bd0869fa-784f-4362-9241-6997399dac47","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"28116b30-7500-4638-abe3-8e537bd2288d","keyword":"介电性能","originalKeyword":"介电性能"},{"id":"6f1a0ecb-894b-4904-971e-52f8e242420d","keyword":"耐电晕","originalKeyword":"耐电晕"},{"id":"53081425-e9f6-46ea-aea6-fb4809728b2a","keyword":"氧化铝","originalKeyword":"氧化铝"}],"language":"zh","publisherId":"jycltx200702001","title":"纳米氧化铝杂化聚酰亚胺薄膜的制备与性能研究","volume":"40","year":"2007"},{"abstractinfo":"以AlCl_3·6H_2O为前驱体,无水乙醇和去离子水的混合溶液为溶剂,环氧丙烷为凝胶网络诱导荆,通过溶胶-凝胶技术制备得到溶胶,再经超临界干燥制备出块状氧化铝气凝胶.采用SEM、TEM、XRD、BET等手段,对氧化铝气凝胶在不同热处理温度下的微观结构进行了对比和分析.结果表明,氧化铝气凝胶的主要成分为多晶勃姆石相,微观结构由许多叶片状纤维堆积形成,经500和1 000℃热处理后成块性未受到明显的影响,比表面积各为429和174 m~2/g.在20~1000℃内,氧化铝气凝胶发生了由多晶态勃姆石相→γ-Al_2O_3→δ-Al_2O_3的相转变.","authors":[{"authorName":"周洁洁","id":"04973b8b-587e-43f2-83e3-496494aff170","originalAuthorName":"周洁洁"},{"authorName":"陈晓红","id":"0368d8dc-31ef-41aa-bce6-dbfbc82ec7be","originalAuthorName":"陈晓红"},{"authorName":"胡子君","id":"337d21ed-1f23-42c0-b49b-826c1b77d273","originalAuthorName":"胡子君"},{"authorName":"孙陈诚","id":"0172780a-d8bd-4340-8d92-a213ef501275","originalAuthorName":"孙陈诚"},{"authorName":"陈海坤","id":"85dab661-cde7-4741-8915-3c692cf8d80c","originalAuthorName":"陈海坤"},{"authorName":"宋怀河","id":"70227b4e-abdb-4a6c-ace0-1e02fc2fe3b6","originalAuthorName":"宋怀河"}],"doi":"10.3969/j.issn.1007-2330.2010.02.014","fpage":"51","id":"2b603b41-f819-493f-a540-dfefde10cee3","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"f8d37c41-0a02-4b5b-b14d-801cf385fd4e","keyword":"块状","originalKeyword":"块状"},{"id":"7f4d1a0c-5ccd-4524-a767-b999fe22886b","keyword":"氧化铝气凝胶","originalKeyword":"氧化铝气凝胶"},{"id":"d3325bc6-0ab1-4b67-9082-076552f6d54c","keyword":"比表面积","originalKeyword":"比表面积"},{"id":"04b0c7c2-ea8e-4e50-8d6b-c40b31fd599e","keyword":"热处理","originalKeyword":"热处理"}],"language":"zh","publisherId":"yhclgy201002014","title":"热处理对块状氧化铝气凝胶微观结构的影响","volume":"40","year":"2010"},{"abstractinfo":"Al_2O_3气凝胶以其独特性质受到人们的广泛关注.本文就Al_2O_3气凝胶的结构、性质和制备方法进行了综述,制备方法包括铝醇盐的一步法、两步法和无机铝盐的滴加环氧丙烷法,其中滴加环氧丙烷法是制备高性能Al_2O_3气凝胶非常有发展潜力的方法之一.同时还介绍了纤维增强气凝胶、多组分及掺杂改性气凝胶.","authors":[{"authorName":"胡子君","id":"a1554964-3e43-4aa8-adaa-f51f081cb2a5","originalAuthorName":"胡子君"},{"authorName":"周洁洁","id":"e91c726e-80ed-4b63-b7cf-11d4aa6db69b","originalAuthorName":"周洁洁"},{"authorName":"陈晓红","id":"13a29dea-e19a-4a1c-98d9-52c260b6154e","originalAuthorName":"陈晓红"},{"authorName":"孙陈诚","id":"d2969b25-3cc3-4ab3-9122-6cef9714140e","originalAuthorName":"孙陈诚"}],"doi":"","fpage":"1002","id":"0e4ca05b-479d-4878-8249-995beec3ae5b","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"e6d2ffb1-78d3-4202-82f7-2f4095a9d4b2","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"cc3368b1-4121-4d4b-ba71-64cba61cc922","keyword":"气凝胶","originalKeyword":"气凝胶"},{"id":"c9096bda-8959-4c43-8f9a-39953a3b4770","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"a87ef70b-c80d-40d5-835c-8449ac1c6d2b","keyword":"复合","originalKeyword":"复合"},{"id":"60c5cd4e-f354-456d-8bef-dcf86a163135","keyword":"掺杂","originalKeyword":"掺杂"}],"language":"zh","publisherId":"gsytb200905026","title":"氧化铝气凝胶的研究进展","volume":"28","year":"2009"},{"abstractinfo":"通过相转化法制备了纳米氢氧化铝镁/PVDF杂化膜,考察了铸膜液组成中的复配添加剂、AMH含量和分散剂对杂化膜结构和性能的影响.结果表明,通过复配添加剂可明显改变杂化膜的断面结构,再结合AMH含量以及通过分散剂的调节来辅助改变杂化膜的性能可得到不同结构和性能的杂化膜","authors":[{"authorName":"魏汉辉","id":"1f1d9ac7-8591-429c-b258-67e5e40fc077","originalAuthorName":"魏汉辉"},{"authorName":"刘红斌","id":"5a0c5950-2bac-47fb-bddf-f142cf303b7b","originalAuthorName":"刘红斌"},{"authorName":"吕晓龙","id":"2a9d76e6-8ce0-4122-8e08-6907f969cf6d","originalAuthorName":"吕晓龙"},{"authorName":"马军","id":"c9a6f3ed-327d-44f1-918e-d48285760a3e","originalAuthorName":"马军"}],"doi":"","fpage":"981","id":"3a61eedf-fadc-4a34-8490-c529899cecc5","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"968ebe61-10e3-4d12-a6ef-9abc9ca07091","keyword":"聚偏氟乙烯","originalKeyword":"聚偏氟乙烯"},{"id":"f216c480-aaf0-4f56-aeb0-8ab15453bed0","keyword":"纳米氢氧化铝镁","originalKeyword":"纳米氢氧化铝镁"},{"id":"310b27c8-2717-41a2-93de-da97473e3c84","keyword":"杂化膜","originalKeyword":"杂化膜"},{"id":"bad2d563-d44d-4330-886b-381017d2470b","keyword":"结构和性能","originalKeyword":"结构和性能"}],"language":"zh","publisherId":"gncl200906031","title":"纳米氢氧化铝镁/PVDF杂化膜的制备研究","volume":"40","year":"2009"},{"abstractinfo":"以陶瓷纤维制成的高温隔热瓦为骨架,真空浸渍氧化铝溶胶,再经过凝胶、老化和超临界干燥制备出氧化铝气凝胶复合高温隔热瓦,研究了其在不同温度处理后(最高温度1 400℃)的微观结构、隔热和力学性能.结果表明:气凝胶复合高温隔热瓦在1 400℃保温30 min后线收缩率仅为2%;随着热处理温度升高,气凝胶颗粒发生熔并、长大,气凝胶从填充纤维空隙到不断收缩,但对纤维骨架没有明显影响;隔热瓦的室温、高温热导率均显著降低;在热面1 400的背温测试中,复合后材料的背温从945℃降到870℃;复合后隔热瓦的力学性能略有增加;但是1 200~1 400℃的压缩强度下降较大.可见,气凝胶复合高温隔热瓦可改善其隔热性能,但在高温下力学性能下降.","authors":[{"authorName":"孙晶晶","id":"3487cbeb-8a48-45b0-9b75-86bda823345a","originalAuthorName":"孙晶晶"},{"authorName":"胡子君","id":"793c2269-12d9-4ad9-8d7b-178d38bfaec1","originalAuthorName":"胡子君"},{"authorName":"吴文军","id":"5b6c39b8-b64d-423b-944b-3cfa9068bc37","originalAuthorName":"吴文军"},{"authorName":"周洁洁","id":"ce26e11e-b0c2-4d74-87c1-d44544a88788","originalAuthorName":"周洁洁"},{"authorName":"李俊宁","id":"55c5839e-d2f5-48fb-8b51-1a1137e5be0d","originalAuthorName":"李俊宁"}],"doi":"10.12044/j.issn.1007-2330.2017.03.008","fpage":"33","id":"52160d95-27de-481a-a304-8833b4717330","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"798fb5db-cadb-4dcd-96fe-92f2ec6a47dd","keyword":"气凝胶","originalKeyword":"气凝胶"},{"id":"cab737c3-416a-4682-9012-13daaaf7fdab","keyword":"隔热瓦","originalKeyword":"隔热瓦"},{"id":"1096de02-d64b-4fcb-846e-e945c6eff16b","keyword":"隔热性能","originalKeyword":"隔热性能"},{"id":"4012ceed-8094-4837-9117-d390480ef698","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"yhclgy201703008","title":"氧化铝气凝胶复合高温隔热瓦的制备及性能","volume":"47","year":"2017"},{"abstractinfo":" 采用微乳化-热液法制备了一系列氧化锆(ZrO2)改性的纳米氧化铝分散液,然后用原位聚合法制备了相应的氧化锆复配纳米氧化铝杂化聚酰亚胺复合薄膜,并对其进行了TEM表征、电气强度和电导电流测试以及电老化阈值分析。结果表明:掺杂氧化锆复配纳米氧化铝的杂化聚酰亚胺复合薄膜的电气强度大幅提高,当ZrO2的掺杂量为7%时,电气强度达到最高为396.8 MV/m;其电导电流密度、电老化阈值均高于只掺杂纳米氧化铝的聚酰亚胺薄膜,且随ZrO2含量增加均出现先增大后减小的趋势。","authors":[{"authorName":"范勇","id":"e7a79f84-8b01-484f-b50b-7d4d9eac3d2b","originalAuthorName":"范勇"},{"authorName":"韩笑笑","id":"ac1e545c-a8b1-4f2a-812b-7176009f0e3c","originalAuthorName":"韩笑笑"},{"authorName":"陈昊","id":"b2b329b8-5612-4c16-9385-439f86b7974f","originalAuthorName":"陈昊"},{"authorName":"杨瑞宵","id":"f57e7cbf-71e8-4550-8d7a-c6aaf5acd14e","originalAuthorName":"杨瑞宵"}],"doi":"","fpage":"63","id":"16d5fa13-9d12-4242-9180-e02c738e66d0","issue":"4","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"1d24677d-6414-42fe-9235-f7adf0e1eb42","keyword":"聚酰亚胺薄膜","originalKeyword":"聚酰亚胺薄膜"},{"id":"c738b2f8-9aa5-4baa-9a1d-76be2ca5386c","keyword":"电气强度","originalKeyword":"电气强度"},{"id":"6585f39b-9b85-4390-ba07-c804d2566c27","keyword":"电导电流","originalKeyword":"电导电流"},{"id":"a5f899b9-e37b-4369-96ee-f288b29cdb26","keyword":"电老化阈值","originalKeyword":"电老化阈值"}],"language":"zh","publisherId":"jycltx201304017","title":"氧化锆复配纳米氧化铝杂化聚酰亚胺薄膜的介电性能研究","volume":"","year":"2013"},{"abstractinfo":"用溶胶-凝胶法制备了纳米氧化硅( SiO2)及纳米氧化铝( Al2O3)溶胶,并将二者掺入到聚酰胺酸基体中,亚胺化得到聚酰亚胺 (PI)/SiO2/Al2O3杂化薄膜 ,采用红外光谱、原子力显微镜、热失重及阻抗分析仪对薄膜的结构及热性能、介电性能进行表征.结果表明, SiO2和 Al2O3粒子呈纳米级均匀分散在薄膜基体中,并且与有机相存在键合;材料的热分解温度有所提高 ;介电常数随无机含量的增加而增加.","authors":[{"authorName":"王伟","id":"e5904b53-7ab1-4526-9c32-cf362f7bc414","originalAuthorName":"王伟"},{"authorName":"刘立柱","id":"91e9a907-dd72-4971-af84-1b80b954a534","originalAuthorName":"刘立柱"},{"authorName":"杨阳","id":"60ab89ce-ae96-4c5b-b565-94b7fba232a8","originalAuthorName":"杨阳"},{"authorName":"雷清泉","id":"07bd5508-bdf2-48c2-9d76-0fe36ec340d3","originalAuthorName":"雷清泉"}],"doi":"10.3969/j.issn.1009-9239.2005.05.004","fpage":"11","id":"15a17407-3925-4293-b13c-5ee9768de69d","issue":"5","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"115d55dc-5b95-422e-94d6-309ebdd8488f","keyword":"聚酰亚胺薄膜","originalKeyword":"聚酰亚胺薄膜"},{"id":"5df5dd9d-640e-45cb-abc0-c71431130cea","keyword":"二氧化硅","originalKeyword":"二氧化硅"},{"id":"b1d669be-7215-473d-9d02-245c9f2c2eea","keyword":"三氧化二铝","originalKeyword":"三氧化二铝"},{"id":"d51c267a-e4c5-4f4b-a8d6-ef02b6b0f584","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"6f049a7c-4a57-4603-8c72-c049bca0ba00","keyword":"杂化薄膜","originalKeyword":"杂化薄膜"}],"language":"zh","publisherId":"jycltx200505004","title":"聚酰亚胺/氧化硅/氧化铝纳米杂化薄膜的制备及结构与性能研究","volume":"38","year":"2005"},{"abstractinfo":"用氧化-还原引发体系((NH4)2S2O8-NaHSO3)合成了氢氧化铝-聚丙烯酰胺杂化复合絮凝剂.电导和热失重研究的结果表明,杂化物聚丙烯酰胺链的端基(-SO2-4)与带正电荷的氢氧化铝胶体粒子以离子键性质键合.实验考察了反应温度,引发剂用量,氢氧化铝粒径和用量等因素对杂化聚丙烯酰胺合成的影响,发现氢氧化铝的存在可使杂化聚合物分子量显著提高.透射电镜结果显示原位聚合过程能使团聚的氢氧化铝胶体微粒纳米化.","authors":[{"authorName":"杨鹜远","id":"df155bec-1d56-49de-b391-08296dc8bb8c","originalAuthorName":"杨鹜远"},{"authorName":"钱锦文","id":"ca7bcd4c-f6e7-429e-9e42-5a086a62edda","originalAuthorName":"钱锦文"},{"authorName":"沈之荃","id":"b552d96a-e2cd-4e5a-9df8-a08e77a33cbd","originalAuthorName":"沈之荃"},{"authorName":"赵兴军","id":"0fbcb957-7f5e-4f43-ade2-a4b4179db9ae","originalAuthorName":"赵兴军"}],"doi":"","fpage":"68","id":"0745b7eb-7eda-46b2-85b7-3cc51b7056ea","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"63f537bd-0205-4a87-9550-e389bf203439","keyword":"有机-无机杂化","originalKeyword":"有机-无机杂化"},{"id":"751d3c78-0507-4c53-92ca-54be83863f00","keyword":"聚丙烯酰胺","originalKeyword":"聚丙烯酰胺"},{"id":"57b48897-d832-4142-bbf7-5387e7cc7c82","keyword":"氢氧化铝","originalKeyword":"氢氧化铝"},{"id":"d849966b-08b2-4202-b9cf-9af7e4ffa3b0","keyword":"絮凝剂","originalKeyword":"絮凝剂"},{"id":"fd5fb4a2-30e2-4bdf-abe5-0df73d65d7b9","keyword":"原位聚合","originalKeyword":"原位聚合"}],"language":"zh","publisherId":"gfzclkxygc200401017","title":"氢氧化铝-聚丙烯酰胺杂化复合絮凝剂的合成与表征","volume":"20","year":"2004"}],"totalpage":6900,"totalrecord":69000}