欢迎登录材料期刊网

材料期刊网

高级检索

利用标准的单棍甩带技术在大气环境下制备了Fe73.5-xCOxSi13.5B9Cu1Nb3 (x=10、30,50)非晶条带.在550和600℃下分别对非晶条带进行真空等温退火1h,从而在非晶基体中形成纳米晶相.X射线衍射(XRD)分析结果表明,550和600℃真空等温退火1h后,Fe73.5-xCOxSi13.5B9Cu1Nb3(x=10、30、50)非晶条带中析出的α-Fe (Co、Si)相的平均晶粒尺寸D分别为19.3、20.1、22.8nm和24.8、25.2、26.5nm.基于差热分析的数据,利用Kissinger、Ozawa和Augis-Bennett模型计算了非晶条带的初始结晶激活能,利用Johnson-Mehl-Avrami(JMA)方程计算了非晶条带初始结晶的局域Avrami因子n,局域Avrami因子n随晶化体积分数α的显著变化说明非晶条带非等温初始结晶的机理在不同的晶化阶段是不一样的,晶化初期(0<α<0.2)是扩散控制的三维形核和晶粒生长的整体晶化,形核速率逐渐减小;晶化中后期(0.2<α<1.0)为一维形核和生长的表面晶化过程,形核速率近似为零.

参考文献

[1] Yoshizawa Y;Oguma S;Yamauchi K .[J].Journal of Applied Physics,1988,64:6044-6046.
[2] Herzer G .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1991,133:1-5.
[3] Herzer G. .Grain structure and magnetism of nanocrystalline ferromagnets[J].IEEE Transactions on Magnetics,1989(5):3327-3329.
[4] Chau N;Chien N;Hoa NQ;Niem PQ;Luong NH;Tho ND;Hiep VV .Investigation of nanocomposite materials with ultrasoft and high performance hard magnetic properties[J].Journal of Magnetism and Magnetic Materials,2004(0):174-179.
[5] Chau N;Hoa N Q;The N D et al.[J].Journal of Magnetism and Magnetic Materials,2006,303:e415-e418.
[6] Johnson W A;Mehl R F .[J].Transactions of the AIME,1939,135:416-458.
[7] Chau N.;Luong NH.;Chien NX.;Thanh PQ.;Vu LV. .Influence of P substitution for B on the structure and properties of nanocrystalline Fe73.5Si15.5Nb3Cu1B7-xPx alloys[J].Physica, B. Condensed Matter,2003(2/4):241-243.
[8] Chau N;Hoa N Q;Luong N H .[J].Journal of Magnetism and Magnetic Materials,2005,290-294:1547-1550.
[9] Blazquez JS.;Borrego JM.;Conde CF.;Conde A.;Greneche JM. .On the effects of partial substitution of Co for Fe in FINEMET and Nb-containing HITPERM alloys[J].Journal of Physics. Condensed Matter,2003(23):3957-3968.
[10] Gomez-Polo C;Perez-Landazabal J I;Recarte V .[J].IEEE Transactions on Magnetics,2003,39:3019-3024.
[11] Hoa N Q;Chau N;Yu S C et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2007,449-451:364-367.
[12] Borrego JM.;Conde A.;Greneche JM.;Conde CF. .Crystallization of Co-containing Finemet alloys[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2001(1/3):120-124.
[13] Nowosielski R;Wyslocki J J;Wnuk I et al.[J].Journal of Materials Processing Technology,2006,175:324-329.
[14] Yoshizawa Y;Fujii S;Ping D H et al.[J].Scripta Materialia,2003,48:863-868.
[15] Phan M H;Peng H X;Wiscom M R et al.[J].Composites Part A:Applied Science and Manufacturing,2006,37:191-196.
[16] Kolano-Burian A;Ferenc J;Kulik T .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,375-377:1078-1082.
[17] Kolano-Burian A;Kulik T;Vlasak G;Ferenc J;Varga LK .Effect of Co addition on nanocrystallization and soft magnetic properties of (Fe1-xCOx)(73.5)CU1Nb3Si13.5B9 alloys[J].Journal of Magnetism and Magnetic Materials,2004(0):1447-1448.
[18] Kissinger H .[J].Analytical Chemistry,1957,29:1702-1706.
[19] Ozawa T .[J].Bull Chem Soc(Japan),1965,35:1881-1886.
[20] Augis J A;Bennett J E .[J].Journal of Thermal Analysis and Calorimetry,1978,13:283-292.
[21] Lu W;Yan B;Huang WH .Complex primary crystallization kinetics of amorphous Finemet alloy[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2005(40/42):3320-3324.
[22] Christian J M.The Theory of Transformations in Metals and Alloys[M].New York:Pergamon Press,1975
[23] Ghosh G;Chandrasekaran M;Delaey L .[J].Acta Metallurgica Et Materialia,1991,39:925-936.
[24] Sun N X;Zhang K;Zhang X H et al.[J].Nano-Structured Materials,1996,7:637-649.
[25] Lu K;Liu X D;Yuan F H .[J].Physica B:Condensed Matter,1996,217:153-159.
[26] Sun N X;Liu X D;Lu K .[J].Scripta Materialia,1996,34:1201-1207.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%