欢迎登录材料期刊网

材料期刊网

高级检索

采用水热合成法,原位一步还原硫钼酸铵/氧化石墨前驱体,得到三维的二硫化钼/石墨烯(3D-MoS2/G)组装体催化剂。通过X-射线衍射仪、傅里叶变换红外光谱仪、拉曼光谱仪、场发射扫描电镜、透射电镜以及低温氮吸附等手段对其结构和形貌进行表征。以羰基硫( COS)的催化加氢转化为评价指标,对比研究微波处理前/后组装体催化剂的加氢脱硫性能。与传统硫化法制备的MoS2/γ-Al2 O3催化剂相比,经微波处理的水热一步法构筑的3D-MoS2/G-160M组装体显示出优异的催化加氢脱硫活性,在较低的反应温度下(260℃),COS转化率即可达100%。这种优异的催化性能归结为三维组装体的特殊结构及高度分散在其石墨烯片层上的MoS2纳米晶的共同作用。

A simple process to synthesize three-dimensional molybdenum disulfide-graphene monolithic catalysts (3D-MoS2-G) was developed. 3D-MoS2-G hybrid monoliths were fabricated by a combined hydrothermal self-assembly and freeze-drying treat-ment, in which ammonium tetrathiomolybdate and graphite oxide were used as starting materials. The structure and morphology of the samples were characterized by X-ray diffraction, Fourier transform infrared spectrometry, Raman spectrometry, field emission scanning electron microscopy, transmission electron microscopy and nitrogen adsorption. The catalytic performance of the hybrid monoliths was investigated by evaluating the activity for the hydrodesulfurization ( HDS) of carbonyl sulfide ( COS) . In addition, the influence of microwave irradiation on the catalytic property of the 3D-MoS2-G monoliths was also investigated. It is demonstra-ted that after microwave irradiation the 3D-MoS2-G monoliths show an excellent activity for COS hydrogenation compared with the traditional MoS2/γ-Al2 O3 catalyst prepared by impregnation-sulfidation. The 3D-MoS2-G-160M monolith hydrothermally synthe-sized at 160℃ exhibits the highest COS conversion of 100% at a relatively low temperature (260℃) for the HDS reaction. The su-perior performance of the 3D-MoS2-G-160M catalyst can be ascribed to the unique hybridized structure of the MoS2 nanoparticles u-niformly dispersed on graphene sheets in the monolith.

参考文献

[1] Divya Chandra;Derek Elsworth;Dirk VanEssendelft .Mechanical and Transport Characteristics of Coal-Biomass Mixtures for Advanced IGCC Systems[J].Energy & Fuels,2012(Sep./Oct.):5729-5739.
[2] Alexander Samokhvalov;Bruce J. Tatarchuk .Characterization of active sites, determination of mechanisms of H2S COS and CS2 sorption and regeneration of ZnO low-temperature sorbents: past, current and perspectives[J].Physical chemistry chemical physics: PCCP,2011(8):3197-3209.
[3] Ferm R J .The chemistry of carbonyl sulfide[J].CHEMICAL REVIEWS,1957,57(04):621-640.
[4] Paris D. N. Svoronos;Thomas J. Bruno .Carbonyl Sulfide: A Review of Its Chemistry and Properties[J].Industrial & Engineering Chemistry Research,2002(22):5321-5336.
[5] 杨直,李春虎.整体煤气化联合循环(IGCC)中高温煤气脱硫技术进展[J].山西化工,2001(02):15-17.
[6] 王芳芳,伍星亮,赵海,张德祥.干法脱除煤气中有机硫的研究现状与进展[J].煤化工,2007(03):28-32.
[7] 杜彩霞.有机硫加氢转化催化剂的使用[J].工业催化,2003(09):13-17.
[8] Tops?e H;Clausen B S;Candia R et al.In situ M?ssbauer emission spectroscopy studies of unsupported and supported sul-fided Co-Mo hydrodesulfurization catalysts[J].Journal of Catalysis,1981,68(02):433-452.
[9] Bruno F. Machado;Philippe Serp .Graphene-based materials for catalysis[J].Catalysis science & technology,2012(1):54-75.
[10] Cancan Huang;Chun Li;Gaoquan Shi .Graphene based catalysts[J].Energy & environmental science: EES,2012(10):8848-8868.
[11] 张丽芳,魏伟,吕伟,邵姣婧,杜鸿达,杨全红.石墨烯基宏观体:制备、性质及潜在应用[J].新型炭材料,2013(03):161-171.
[12] 盛凯旋,徐宇曦,李春,石高全.化学还原氧化石墨烯制备高性能石墨烯自组装水凝胶[J].新型炭材料,2011(01):9-15.
[13] Xu, Y.;Sheng, K.;Li, C.;Shi, G. .Self-assembled graphene hydrogel via a one-step hydrothermal process[J].ACS nano,2010(7):4324-4330.
[14] Cong, H.-P.;Ren, X.-C.;Wang, P.;Yu, S.-H. .Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process[J].ACS nano,2012(3):2693-2703.
[15] Ioana Fechete;Ye Wang;Jacques C. Vedrine .The past, present and future of heterogeneous catalysis[J].Catalysis Today,2012(1):2-27.
[16] Wu, Z.-S.;Yang, S.;Sun, Y.;Parvez, K.;Feng, X.;Müllen, K. .3D nitrogen-doped graphene aerogel-supported Fe _3O _4 nanoparticles as efficient electrocatalysts for the oxygen reduction[J].Journal of the American Chemical Society,2012(22):9082-9085.
[17] Joon Seok Lee;Sahng Ha Lee;Jangbae Kim .Graphene-Rh-complex hydrogels for boosting redox biocatalysis[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,2013(4):1040-1044.
[18] Yongqiang He;Nana Zhang;Qiaojuan Gong;Zhiliang Li;Jianping Gao;Haixia Qiu .Metal nanoparticles supported graphene oxide 3D porous monoliths and their excellent catalytic activity[J].Materials Chemistry and Physics,2012(2/3):585-589.
[19] Li, Y.;Wang, H.;Xie, L.;Liang, Y.;Hong, G.;Dai, H. .MoS_2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction[J].Journal of the American Chemical Society,2011(19):7296-7299.
[20] Hummers Jr W S;Offeman R E .Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(06):1339-1339.
[21] Berhault G.;Pavel AC.;Yang JZ.;Rendon L.;Yacaman MJ.;Araiza LC.;Moller AD.;Chianelli RR.;Mehta A. .The role of structural carbon in transition metal sulfides hydrotreating catalysts[J].Journal of Catalysis,2001(1):9-19.
[22] L.P.A.Elst;S.Eijsbouts;A.D.van Langeveld;J.A.Mouljin .Deactivation of MoS_2/Al_2O_3 in Thiophene Hydrodesulfurization:An Infrared Spectroscopic Analysis by Adsorbed CO[J].Journal of Catalysis,2000(1):95-103.
[23] Yong Zhou;Qiaoliang Bao;Lena Ai Ling Tang .Hydrothermal Dehydration for the "Green" Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties[J].Chemistry of Materials: A Publication of the American Chemistry Society,2009(13):2950-2956.
[24] Chun Li;Gaoquan Shi .Three-dimensional graphene architectures[J].Nanoscale,2012(18):5549-5563.
[25] Zhihong Tang;Shuling Shen;Jing Zhuang .Noble-Metal-Promoted Three-Dimensional Macroassembly of Single-Layered Graphene Oxide[J].Angewandte Chemie,2010(27):4603-4607.
[26] Hengchang Bi;Kuibo Yin;Xiao Xie;Yilong Zhou;Neng Wan;Feng Xu;Florian Banhart;Litao Sun;Rodney S. Ruoff .Low Temperature Casting of Graphene with High Compressive Strength[J].Advanced Materials,2012(37):5124-5129.
[27] Worsley M A;Olson T Y;Lee J R I et al.High surface area,sp2-cross-linked three-dimensional graphene monoliths[J].Journal of Physical Chemistry B,2011,2(08):921-925.
[28] Jianfeng Shen;Tie Li;Yu Long .One-step solid state preparation of reduced graphene oxide[J].Carbon: An International Journal Sponsored by the American Carbon Society,2012(6):2134-2140.
[29] Tong, X.;Wang, H.;Wang, G.;Wan, L.;Ren, Z.;Bai, J. .Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries[J].Journal of Solid State Chemistry,2011(5):982-989.
[30] Tang B;Guoxin H;Gao H .Raman spectroscopic characteriza-tion of graphene[J].Applied Spectroscopy Reviews,2010,45(05):369-407.
[31] Sasha Stankovich;Dmitriy A. Dikin;Richard D. Piner .Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon: An International Journal Sponsored by the American Carbon Society,2007(7):1558-1565.
[32] Boonyawan Yoosuk;Chunshan Song;Jae Hyung Kim .Effects of preparation conditions in hydrothermal synthesis of highly active unsupported NiMo sulfide catalysts for simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene[J].Catalysis Today,2010(1/2):52-61.
[33] Pham, H.D.;Pham, V.H.;Cuong, T.V.;Nguyen-Phan, T.-D.;Chung, J.S.;Shin, E.W.;Kim, S. .Synthesis of the chemically converted graphene xerogel with superior electrical conductivity[J].Chemical communications,2011(34):9672-9674.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%