欢迎登录材料期刊网

材料期刊网

高级检索

高炉冶炼过程中炉温是影响技术经济指标的关键参数,保持合理的炉温是高炉稳定顺行的关键因素。采用某炼铁厂在线采集的数据,通过核主元分析对建模数据进行预处理,根据相关系数选定模型参数,确定参数对炉温的滞后时间,基于支持向量机建立了高炉向凉、向热预测诊断模型。通过实例验证,该模型具有很高的精度。

Furnace temperature in iron making process was key parameter, which directly affected the primary tech- nique and economics index. One of the key factors for smooth running of blast furnace was to maintain a reasonable temperature. Based on data collected from some ironmaking plant, the model parameters were adopted according to correlation coefficients. Considering the lag time of furnace temperature, status diagnosis system in blast fur- naces was proposed based on support vector machines (SVM). In order to obtain precise finite element model, the modeling data were preprocessed by the kernel principal component analysis (KPCA).

参考文献

[1] LIU Xiang-guan,ZENG Jiu-sun,ZHAO Min.Mathematical Model and Its Hybrid Dynamic Mechanism in Intelligent Control of Ironmaking[J].钢铁研究学报(英文版),2007(01):7-11.
[2] ZHANG J H;JIN Y L .Prediction Model of Silicon Theory Content in Hot Metal Using Optimized BP Network[J].Jour- nal of Iron and Steel Research:International,2007,14(11):60.
[3] 刘祥官;刘芳.高炉炼铁过程优化与智能控制系统[M].北京:冶金工业出版社,2003
[4] 曲飞,吴敏,曹卫华,何勇.基于支持向量机的高炉炉况诊断方法[J].钢铁,2007(10):17-19.
[5] Choi S W;Lee C;Lee J M et al.Fault Detection and Identifi- cation of Nonlinear Processed Based on Kernel PCA[J].Che mometries and Intelligent Laboratory Systems,2005,75(01):55.
[6] 邓乃扬;田英杰.数据挖掘中的新方法一支持向量机[M].北京:科学出版社,2004
[7] Abhijit Kulkarni;V.K.Jayaraman;B.D.Kulkarni .Support vector classification with parameter tuning assisted by agent-based technique[J].Computers & Chemical Engineering: An International Journal of Computer Applications in Chemical Engineering,2004(3):311-318.
[8] Daniel J. Strauss;Gabriele Steidl .Hybrid wavelet-support vector classification of waveforms[J].Journal of Computational and Applied Mathematics,2002(2):375-400.
[9] Suykens J A K;Vandewalle J .Least Squares Support Vector Machine Chassifiers[J].Neural Processing Letters,1999,9(03):293.
[10] Daniel J. Sebald;James A. Bucklew .Support Vector Machines and the Multiple Hypothesis Test Problem[J].IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society,2001(11):2865-2872.
[11] Vapnik V.Statistical Learning Theory[M].New York:springer-verlag,1998
[12] Vapnik Vladimir N. .Overview of statistical learning theory[J].IEEE Transactions on Neural Networks,1999(5):988-999.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%