欢迎登录材料期刊网

材料期刊网

高级检索

为了预测Mg微合金化对MoSi2性能的影响,运用固体与分子经验电子理论(EET),采用键距差(BLD)以及平均原子模型的方法,对MoSi2和Mo(Si0.95,Mg0.05)2固溶体进行价电子结构分析,并计算各键键能。结果表明:Mg微合金化改变了Mo原子和Si原子的杂化状态,从而使相应的价电子结构参数发生变化。Mg微合金化之后,最强键上共价电子对数和键能降低,表明固溶体的熔点和硬度降低。共价电子数在总价电子数中所占比例下降,晶格电子数增加,因而Mg微合金化之后宏观上表现为材料的强度降低,但是塑性和导电性增加,脆性降低。

Based on the empirical electron theory(EET) of solids and molecules,the valence electron structure of Mo(Si0.95,Mg0.05)2 solid solution was studied and compared with that of pure MoSi2to investigate the effect of microalloying with magnesium(Mg) on the properties of molybdenum disilicide(MoSi2).The bond length difference(BLD) method and the average atom model in substitution solid solutions were employed in these analyses.The results show that the hybridization states of Mo and Si atoms are altered by alloying Mg into MoSi2,and correspondingly,the parameters of valence electron structure are changed.After magnesium-microalloying,the covalent electron amount and the bond energy on the strongest bond drop,implying that the melting point and hardness decrease.Furthermore,it can be concluded that the proportion of covalent electrons in total valence electrons reduces while the lattice electrons increase,which will lead to the reduction in strength and brittleness,and increase in plasticity and conductivity of Mo(Si0.95,Mg0.05)2 solid solution.

参考文献

[1] Vasudevan A K;Petrovic J J .A comparative overview of molybdenum disilicide composites[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1992,155:1-17.
[2] Bundschuh K;Schuze M;Muller C et al.Selection of materials for use at temperatures above 1500℃ in oxidizing atmospheres[J].Journal of the European Ceramic Society,1998,18:2389-2391.
[3] 刘红梅,杨延清,吴中,罗贤.原位合成SiCp/(Mo,W)Si2复合材料的组织与性能[J].西北工业大学学报,2007(04):512-516.
[4] Waghmare UV.;Bulatov VV.;Duesbery MS.;Kaxiras E. .Effects of alloying on the ductility of MoSi2 single crystals from first-principles calculations[J].Modelling and simulation in materials science and engineering,1998(4):493-506.
[5] Harada Y;Murata Y;Morinaga M .Solid solution softening and hardening in alloyed MoSi2[J].Intermetallics,1998,6:529-535.
[6] Heron AJ.;Schaffer GB. .Mechanical alloying of MoSi2 with ternary alloying elements. Part 1: Experimental[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):105-111.
[7] 杨海波,李伟,单爱党,吴建生.热处理对(Mo0.85Nb0.15)Si2单晶显微结构的影响[J].中国有色金属学报,2005(01):100-104.
[8] R. MITRA;K. SADANANDA;C.R. FENG .Effect of microstructural parameters and Al alloying on creep behavior, threshold stress and activation volumes of molybdenum disilicides[J].Intermetallics,2004(7/9):827-836.
[9] T. Dasgupta;A.M. Umarji .Improved ductility and oxidation resistance in Nb and Al co-substituted MoSi_2[J].Intermetallics,2008(6):739-744.
[10] Aidang Shan;Wei Fang;Hitoshi Hashimoto .Effect of Mg addition on the microstructure and mechanical properties of MoSi_2 alloys[J].Scripta materialia,2002(9):645-648.
[11] J. N. Woolman;J. J. Petrovic;Z. A. Munir .Incorporating Mg into the Si sub-lattice of molybdenum disilicide[J].Scripta materialia,2003(6):819-824.
[12] Woolman JN;Petrovic JJ;Munir ZA .Microalloying of molybdenum disilicide with magnesium through mechanical and field activation[J].Journal of Materials Science,2004(16/17):5037-5043.
[13] 张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993
[14] 刘志林;李志林;刘伟东.界面电子结构与界面性能[M].北京:科学出版社,2002
[15] Petrovic J J .Toughening strategies for MoSi2-based high temperature structural silicides[J].Intermetallics,2000,8:1175-1182.
[16] 束德林.工程材料力学性能[M].北京:机械工业出版社,2007
[17] Woolman J N.Dense nanometric microalloyed MoSi2 synthesized through mechanical and field activation[M].USA,University of California Davis,2003
[18] 邢胜娣.金属化合物Ti3Al的价电子结构及其力学性能[J].吉林大学自然科学学报,1985(01):62-70.
[19] 李金平,孟松鹤,韩杰才,张幸红,罗晓光.ZrC1-xNx固溶体的价电子结构与性能[J].稀有金属材料与工程,2008(06):980-983.
[20] 李文;关振中;杜立明 等.Ti-Al系金属间化合物价电子结构对其脆性的影响[J].金属热处理,1996,21(11):3-5.
[21] 李文;张瑞林 .金属间化合物的价电子结构脆性判据[J].长春大学学报(自然科学版),1999,9(01):12-15.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%